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CHAPTER 1: INTRODUCTION 

Dissertation Organization 

This dissertation is organized into four chapters. Chapter 1 is a general introduction 

with background information about each of the other chapters. The second chapter 

"Somatostatin increases phospholipase D activity and PIP2 synthesis in clonal (3-cells 

HIT-T15" has been published in the journal of Molecular Pharmacology. Chapter 3 

"Somatostatin Receptors Signals through EFA6-Arf6 to Activate PLD in Clonal P-Cells, 

HIT-T15" will be submitted to the Journal of Biological Chemistry. Chapter 4 consists of a 

general conclusion and direction for future research. 

Introduction 

The focus of this dissertation is to determine the signaling cascade responsible for the 

paradoxical increase in intracellular calcium concentrations ([Ca2+]j) when somatostatin (SS) 

and arginine vasopressin (AVP) treatments are added to HIT-T15 cells. In this dissertation, I 

will demonstrate the ability of SS to activate the small G-protein Arf6 through EFA6, a 

guanine nucleotide exchange factor. I will further demonstrate that Arf6 stimulates 

phospholipase D1 (PLD1) to hydrolyse phosphatidylcholine (PC) to phosphatidic acid (PA). 

PA will stimulate PIP-5 kinase to phosphorylate phosphosinsitol 4-phosphosate (PIP) to 

phosphoinsitol 4,5-bisphosphate (PIP2) (Fig. 1). This increase in PIP2 can act as additional 

substrate for phospholipase C (PLC), which produces its downstream effect in increasing 

[Ca2+]j. The details of this mechanism and the components involved will be elucidated in the 

introduction. HIT-T15 cells are a hamster tumor cell-line of pancreatic |3-cells. These cells, 

like all pancreatic p-cells are known for their ability to secrete the hormone insulin. Insulin is 
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essential for regulating metabolic processes, most notably the storage of glucose and lipids in 

the body1. Abnormal secretion or response to insulin can lead to the disease state known as 

diabetes mellitus. Diabetes is classified by high blood glucose levels and abnormal lipid 

levels in patients1. Attenuation of this epidemic disease can only occur with a better 

understanding of the normal physiological and cellular signaling responsible for insulin 

secretion and its regulation. S S is important for the regulation of insulin secretion from 

pancreas (3-cells. In order to fully appreciate SS's novel signaling mechanism discussed in 

this dissertation introduction, background information will provide into all signaling 

components and signaling paradigm that are involved in this mechanism. 

G-Protein Coupled Receptors: 

Many endogenous hormones communicate with pancreatic (3-cells to both stimulate and 

inhibit insulin secretion. The two hormones this dissertation will focus on are S S and AVP. 

AVP is known to stimulate insulin secretion2, while SS is a classic inhibitory hormone1. 

These hormones interact with seven-transmembrane domain receptors. These receptors have 

an extracellular N-terminus and an intracellular C-terminus3. These receptors are coupled to 

heterotrimeric G-proteins, and are generally referred to as G-protein coupled receptors 

(GPCRs). There are six families of GPCR receptors with each family sharing at least 20% 

homology in amino acid in the transmembrane region3. Class A is known as the rhodopsin­

like receptors and consists of such receptors as rhodopsin, adrenergic, chemokine, opioids, 

SS, melatonin receptors, etc3. Class B consists of such receptors as calcitonin, glucagons, 

latrotoxin, secretin receptors, etc3. Class C consists of metabotropic glutamate, GABA-B, 

calcium-sensing receptors, etc3. Class D consists of STE2 pheromone receptors3. Class E 

consists of STE3 pheromone receptors3. 
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Figure 1. Proposed model of SS-induced increase in PEP2 and cross-talk with AVP. SS receptors activation 
releases the bg-dimer and directly activates EFA6, a GEF for Arf6. This causes Arf6 to release GDP and to 
bind GTP. The active Arf6 will then bind to and activate PLD. PLD will convert phosphatidylcholine (PC) 
into phosphatide acid (PA). PA, a known activator of PEP 5-kinase will activate this enzyme synthesizing 
more PIP2, providing extra substrate for preactivated PLC-P by AVP. This increase in DAG and IP3 levels 
and [Ca2+]j leads to insulin release. 
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Hormone 
Class F consists of cAMP 

receptors3. Heterotrimeric G-

proteins consist of three 

subunits, a, |3, and y. The a 

subunit possesses GTPase 

activity4. While the a-subunit is 

in its inactive GDP-bound state, 

the Py-dimer and the a-subunit 

are coupled together and are 

attached to a GPCR. When a 

Effectors 

Figure 2. General model of G-protein coupled receptor 

activation. 

ligand binds to a GPCR, it 

changes the a-subunit 

conformation to allow GDP to 

leave, replacing it with GTP. 

This reaction converts the a-subunit into the active form. In the GTP-bound state, the a-

subunit displaces itself from the plasma membrane and the Py-dimer. These subunits now 

are able to exert their effects on respective signaling molecules (Fig. 2). The intrinsic GTPase 

activity of the a-subunit hydrolyzes GTP back to GDP, which inactivates the a-subunit and 

resets the system. GPCRs regulate many physiological processes and play a very important 

role in the etiology and treatment of many pathologic states. Each receptor couples to a 

distinct a-subunit. The various a-subunits interact with specific effectors, which leads to the 
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GLP-1 
Glucagon 
Epinephrine 
Histamine 
Others 

Adenylyl cyclase 

# ^ w w % 

^ Z~X 
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Effectors 
PKA 

Figure 3. Hormone operated activation of Gas and adenylyl cyclase pathway. Hormones such as 

those listed, bind to the receptor, changing the structural conformation of both the receptor and the 

a-subunits. These structural changes release GDP from the a-subunit, allowing it to bind to GTP. 

This active form of as dissociates from the membrane, allowing it to activate adenylyl cyclase. 

Adenylyl cyclase converts ATP to cAMP. PKA is then activated by cAMP to phosphorylate its 

effector. 
initiation of the diverse signaling cascade associated with GPCR activation (Fig. 2).The 

classic a-subunits involved in GPCR signaling are Gas, Gaq, and Gaj/0
4. These subunits 

signal through distinct effectors. For example, Gas is known for its ability to stimulate 

adenylyl cyclase3. Many hormone receptors couple through Gas. ̂ -adrenergic, adenosine A,, 

glucagon, AVP-V2, histamine H2, glucagon-like peptide, and vasoactive intestinal 
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polypeptide receptors are a few examples of Gas coupled-receptors5. Active Gas stimulates 

adenylyl cyclase causing an increase in cAMP production. cAMP then binds to the regulatory 

subunits of protein kinase A (PKA), a Ser/Thr-specific kinase. The binding of cAMP to the 

regulatory subunits of PKA allows the two catalytic subunits of the enzyme to dissociate 

from the regulatory subunits and interact with downstream effectors (Fig. 3). Traditionally, 

the stimulation of PKA causes an excitatory cellular response. 

SS 
Acetyl choline 
Cannabinoid 
Others 

GDP | i£L; 

Adenylyl cyclase 

I H H if 1* H 4 

> /"> 
«SEEU 

Effectors 

i 
88 

PKA 
Figure 4. Hormone operated activation of Got,- and inhibition of adenylyl cyclase pathway. 

Hormones, such as those listed, bind to the receptor, changing the structural conformation of both the 

receptor and the a-subunits. These structural changes release GDP from the a-subunit, allowing it to 

bind to GTP. This active form of ai dissociates from the membrane allowing it to inhibit adenylyl 

cyclase. Adenylyl cyclase is then unable to converts ATP to cAMP, which lowers PKA activity. 
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The antithesis of Gas is Ga,j/0. These a-subunits are known to inhibit adenylyl cyclase 

activity, decreasing levels of cAMP3. The lower cAMP levels in cells attenuate PKA activity, 

producing the opposite cellular response to Gas (Fig. 4). The attenuation of PKA produced 

AVP 
Acetyl Choline 
Epinephrine 
Bradykinin 
Others 

^••êêèse^àêèsèi 

Figure 5. Hormone-operated activation of Gaq and phospholipase C pathway. Hormones, 

such as those listed, bind to the receptor, changing the structural conformation of both the 

receptor and the a-subunits. These structural changes release GDP from the a-subunit, allowing 

it to bind to GTP. This active form of aq dissociates from the membrane, allowing it to bind and 

activate PLC, converting PIP2 to ZP3 and DAG. 
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by Gttj/o leads to the inhibitory effect associated with many of the hormones whose receptors 

couple to Gui/o4. SS, and M4 muscarinic, cannabinoid, and (^-adrenergic receptors are 

examples of GPCRs that exert their activity through its coupling to G(Xi/0
4. 

Gaq subunits exert their effect on a completely different downstream effector than 

Gas and G«j/0 subunits. Gaq binds and activates PLC4. Although there are four PLC 

i so forms: PLC-P, PLC-5, PLC-y, and PLC-s, Gaq only activates PLC-(3 by binding to the G-

box domain located on the C-terminus of PLC-(36. This enzyme specifically hydrolyzes the 

membrane phospholipids, PIP2. PLC cleaves PIP2 into inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG). IP3 can bind to its receptors on the endoplasmic reticulum (ER), 

which releases Ca2+ from this organelle (Fig. 6). The increase in [Ca2+]j initiates exocytosis 

and activates numerous Ca2+-sensitive proteins. DAG, the other product of the PLC reaction, 

is well known for its ability to activate novel and conventional forms of protein kinase C 

(PKC)6. This Gaq / PLC mediated pathway is activated by many endogenous ligands 

including hormones and neurotransmitters. The activation of PKC affects cell proliferation 

and other cell reactions. 

The heterotrimeric G-protein a-subunit was classically thought to be the predominant 

mechanism for receptor-mediated activation of intracellular signaling. The Py-dimer coupled 

to the a-subunits, however; it is now appreciated as an important mediator for cell signaling. 

This dissertation focuses on the Py-dimer that couples to SS receptors. Py-dimer is more 

promiscuous than a-subunit in activating downstream effectors. The P-subunit exists in a p~ 

propeller structure, WD40 repeats. Py-dimers are known to interact with many signaling 

proteins such as G-protein receptor kinase (GRK) II and III, adenylyl cyclase, Rho guanine-
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nucleotide exchange factor (GEF), PLC, phospholipase A (PLA), G-protein inward rectifying 

K+ channels (GIRK), and voltage-dependent Ca2+ channel (VDCC)7. 

As indicate above, py-dimer can exert its effect on many different effectors, and each 

plays an essential role in normal cell processing. For example, receptor desensitization is an 

essential part of cell signaling and this process is critically regulated by Py-dimer. Py-dimers 

released from activated receptor binds to the PH-domain of GRKs, leading to the 

phosphorylation of activated receptors. The phosphorylated receptors are then bound by 

arrestin, leading to their homologus desensitization (Fig. 6). 

Another important regulator of cell signaling is adenylyl cyclase. This enyzme plays 

an important role in hormone secretion and gene regulation. Adenylyl cyclase is known to be 

both stimulated and inhibited by Py-dimers. Py-dimer can stimulate adenylyl cyclase 

isoforms II and IV activity, while inhibiting adenylyl cyclase I activity. Rho-GEF activation 

by Py-dimer leading to actin skeleton rearragement is another example of the significance of 

Py-dimer in cellular signaling. PLC activation is essential for hormone mediate exocytosis 

and gene regulation is also regulated by Py-dimer. Isoforms of PLC-P demonstrate a wide 

degree of activty towards the py-dimer. By binding to the PH-domain of PLC-P, Py-dimer 

can stimulate PLC-p 3 and 4, while PLC-P 2 and 1 seem less affected by Py-dimer 

activation7. 

There are 6 known P-subunits; 5 distinct isoforms and 1 splice variant of isoform 58. 

At least 12 different isoforms of the y-subunit exist in mammalian cells. Py-dimer can 

mediate many effectors as indicated above, but the reason not all GPCRs can regulate all of 

the diverse range of effectors is in part due to GPy-isoform specificity for certain distinct 
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downstream effectors9'10' ". For example, VDCC are closed upon Py-dimer release from 

activated SS and M4 muscarinic receptors. However, although the SS receptor effect is 

mediated by Gpi, while M4 receptor's effect is mediated by GP310. Defined py-isoforms can 

also cause a specific enhancement of GRKII translocation and activation. The binding of 

GRKJI to P-adrenergic and rhodopsin receptors and the subsequent phosphorylation of these 

receptors is highly dependent on which P-isoform is present. For rhodopsin receptors, the 

ability of GP2Y2 to increase GRKII binding affinity and phosphorylation rate is greater than 

that of Gpiy27. For P-adrenergic receptors, the converse is true. Gp,y2 increases GRKII 

binding affinity and phosphorylation rate more so than GP^7- In addition, any substitution 

with a different Gy-subunit inhibits the ability of GRKII to bind and phosphorylate both 

rhodopsin and P-adrenergic receptors7. These results indicate certain distinct Py-dimer 

isoforms can preferentially activate downstream effectors. 

Arginine Vasopressin and Somatostatin: 

SS and to a lesser extent AVP will be the two GPCR-mediating hormones examined in this 

dissertation due to their modulation of cell signaling in pancreatic p-cell. AVP is also known 

as antidiuretic hormone (ADH) and has three receptors, AVPu, AVPib, and AVP2
12. All 

these receptors are GPCRs. Via and V,b act through a PLC dependent pathway, while V2 

signals through Gas to activate adenylyl cyclase11. This hormone is traditionally found in the 

posterior pituitary gland, but is also present in the perivascular compartments of the 

pancreas13,14. This nonapeptide hormone exerts a number of physiological effects in 

mammalian systems. AVP plays a major role in regulating body fluid volume, osmolality 

and contributes to the maintenance of blood pressure because of the antidiuretic properties11. 
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AVP received its name because of its potent vasoconstricting propreties. Via receptor 

mediates most of the vasoconstricting properties associated with AVP, while enhancing 

adrenocorticotropin (ATCH) release is mediated by Vib receptors12. In addition, AVP has 

been shown to increase insulin release15. 

Somatostatin (SS) is a peptide hormone secreted from 6-cells of pancreatic islets, the 

central and peripheral nervous systems, and gastrointestinal mucosa16. In the central and 

peripheral nervous systems, SS acts as a neurotransmitter to inhibit the release of other 

neurotransmitters and hormones such as growth hormone, thyrotropin-releasing hormone, 

thyroid-stimulating hormone, corticotropin-releasing hormone, adrenocorticotropic hormone, 

acetylcholine, norepinephrine and dopamine17. SS also can inhibit endocrine secretions of 

the gastrointestinal tract and pancreas, such as gastrin, vasoactive intestinal peptide, gastric 

inhibitory peptide, insulin, glucagon and pancreatic polypeptide15'16. SS is released in two 

sizes; a 14-amino acid peptide and its prohormone N-terminal extend form, a 28-amino acid 

peptide16. Somatostatin receptor (SSTR), a Gj/0-coupled receptor, has 5 subtypes - SSTR1-

518'19. These receptors all couple to Gaj subunit, and transduce their physiological signal 

through many effectors ranging from adenylyl cyclase20, K+ channel21, tyrosine 

phosphatase22, phospholipase C~p23, VDCC24, Na+-H+ antiporter25, and MAP kinase26. In this 

dissertation I will focus on phospholipase D as a novel effector for SS receptor. 

PLD activity: 

Phospholipase D (PLD) is known for its enzymatic properties to hydrolyze PC to PA. The 

conversion of PC to PA regulates many cellular processes such as endocytosis, exocytosis, 

cell proliferation, and cell migration27'28'29'30'31. There are two mammalian PLD isoforms, 
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PLDl and PLD2. These isoforms differ in their subcellular location and regulation. PLDl is 

located in the cytosol, Golgi body, nucleus, and plasma membrane, whereas PLD2 seems to 

be largely found in the plasma membrane32. Each isoform is capable of existing as a splice 

variant, leading to PLD la, PLD lb, PLD2a, and PLD2b33,34. There are many potential 

regulators of PLD, but only a few regulators can stimulate both isoforms. The membrane 

phospholipids, PIP2, and PKC are both known to stimulate both isoforms of PLD35,36. The 

family of small G-proteins, ADP-Ribosylation Factor (Arf) and Rho are potent stimulators of 

PLDl, but are unable to stimulate the endogenous forms of PLD226,37. PLD activity can also 

be stimulated by various GPCRs. A plethora of hormones have been shown to stimulate 

PLD activity through signaling their GPCRs. Angiotensin II38, bradykinin39, carbachol40, 

lysophosphatidic acid41, gonadotropin releasing hormone42, AVP43, endothelin44, thyroid-

stimulating hormone45, prostaglandin F2a
46 are examples of the prevalent nature of hormones 

stimulating PLD. The mechanisms by which these hormones regulate PLD activity are very 

diverse. One mechanism by which PLD may be stimulated is through PLC-dependent 

signaling pathway. PLC catalyzes the conversion of PIP2 to IP3 and DAG. IP3 mobilizes Ca2+ 

from ER stores. This increase in [Ca2+]j is known to activate conventional isoforms of PKC47. 

DAG, the other product of PLC reaction, can also stimulate PKC through its interaction with 

the CI-domain of both conventional and novel PKC isoforms47. Both conventional and novel 

PKC isoforms are known to enhance the activity of PLD. Another mechanism for receptor-

mediated stimulation of PLD is through the activation of small G-proteins. The signaling 

mechanisms responsible for small G-proteins regulation of PLD are diverse, but two small G-

proteins have been firmly established to regulate PLD activity through GPCRs. The small G-

proteins Rho and Arf can mediate GPCR activation of PLD. Stimulation of Rho by activation 
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GRK phosphorylation 

Arrestin 

Figure 6. Role of (3-arrestin in model of GPCR desensitization. (1) SS receptors are 

phosphorylated by GRKs on their carboxyl-terminal tails. (2) Arrestin translocates and binds the 

SS-occupied GRK-phosphorylated receptors, causing receptor desensitized. (3) Arrestin triggers 

SS receptors for internalize via a clathrin-coated dependent endocytosis mechanism. 

of GPCRs is attributed to the associated Py-dimer binding to the PH-domain of a guanine 

nucleotide exchange factor for Rho48 and its direct interaction with Gan/n-subunit49'50. 

These interactions cause GDP to dissociate from Rho, which allows Rho to bind GTP, 

switching it to its active form. There have been several reports of GPCR activation occurring 

due to the ability of Arf proteins to directly interact with activated GPCRs. This signal 
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cascade has been demonstrated in 5-hydroxy tryptamine-2a receptors51, gonadotropin-

releasing hormone receptors52 and M3 muscarinic receptors39. These studies show the 

involvement of Arfl, ArD, and Arf6(see below) in the GPCR-mediated activation of PLD. 

This signaling cascade is dependent on Arf proteins interacting with the NxxPY motif 

located on the third intracellular loop of these receptors. NPxxY motif is a common motif 

found in 94% of Class A family GPCRs53 and is found in SSTR2 receptor, the SS receptor 

present in HIT-T15 cells54. These studies also demonstrate that the activation of a GPCR can 

stimulate the conversion of Arf-GDP to its active Arf-GTP bound state, Arf-GTP can then 

bind to the NxxPY region of the receptor. Another well documented model for GPCR-

mediated activation of Arf6 involves the stimulation of [3-adrenergic receptors and other 

GPCRs. Stimulation of these receptors leads to the dissociation of Py-dimer and subsequent 

activation of GRK. GRK then phosphorylates the receptors, recruiting p-arrestin to the 

receptor and leading to receptor desensitization55,56,57. Upon P-arrestin binding, Arf 

nucleotide-binding-site opener (ARNO), an Arf GEF, scaffolds with the desensitized receptor 

complex, activating Arf6. These previous examples are evidence of how Arfs can be 

involved in modulating signaling cascades initiated upon hormone receptor binding. In this 

dissertation, I report that SS can activate PLD through an Arf6 dependent pathway, causing a 

subsequent increase in PIP2 concentration58. 

Small G-Proteins Arf: 

Arf is a member of the Ras GTPase superfamily, which consists of 20-kDa guanine 

nucleotide-binding proteins. Arfs are inactive when they are bound to GDP, but become 

active when GTP displaces GDP from its binding site. The activated Arfs are known to bind 

to various proteins, including PLD56, PIP 5-kinase59, coatomers (proteins involved in vesicles 
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trafficking between the Golgi and ER)60'61, Arfaptin (protein that coordinates the action of 

Arf and Rho proteins)62 and G-protein Py-subunits63. 

There are 3 classes of Arfs found in mammals. Class I consists of Arfl, Arf2, and 

Arf3, which play a critical role in the transport from ER to Golgi complex and intra-Golgi 

transport. Arf4 and Arf5 make up class II whose function is not well understood. Arf 6 

makes up class III, and has been implicated in many plasma membrane events64. Many of 

Arfs effects stem from their modulation of the membrane-lipid composition. Arfs are known 

to activate PLD and increase PIP2 synthesis. In HL60 cells, 45% of the PIP2 increase was 

attributed to Arfl-induced activation of PLD, while the other 55% was attributed to Arfl's 

direct activation of PIP 5-kinase65. This result is representative of numerous studies 

indicating the significances of Arfs in PIP2 regulation through both a direct activation of PIP 

5-kinase and an indirect activation of PIP 5-kinase through the interaction with PLD64'65. 

In this dissertation, Arf6 has been implicated as an important mediator of SS 

regulation of PLDl within HIT-T15 cells. Arf6 plays an important role in membrane 

trafficking, endocytosis, exocytosis, and actin cytoskeleton rearrangement66. Arf6 ability to 

regulate cortical actin cytoskeleton has a profound effect on cell migration67, wound 

healing68 and phagocytosis69. Arf6 has also known to regulate cell polarity. In hippocampal 

neurons, Arf6 regulates dendritic branching. In addition to Arfô's effects contributed to its 

ability to regulate actin cytoskeleton, Arf6 also regulates plasma membrane receptors such as 

p2-adrenergic70 and luteinizing hormone receptors71. 
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Cells 

HIT-T15 (3-cells 

SH-SY5Y Cells 

Gq-coupled 
receptors 

AVP] receptors 

M3 muscarinic 
receptors 

FRTL-5 Thyroid cells a, -adrenergic 
receptors 

NG 108-15 cells 

CHO cells 

P2 -Purinergic and 
Bradykinin receptors 

P2 -Purinergic 
receptors 

DDT1 MF-2 Smooth Bradykinin receptors 
muscle cells 

Gi/o-coupled 
receptors 

Somatostatin 2 81 
receptors 

8-opioid receptors 82 

Adenosine receptors 83 

Opioid receptors 84 

Neuropeptide Yh 85 
adenosine A, and 
5-HT1B receptors 

Adenosine A, 86 
Receptors 

References 

Table 1. Coincidental increase in [Ca ]; due to cross-talk between Gq- and Gj/0-coupled 

receptors in various cell types. 

GEF regulation of Arf activity: 

Activation of Arfs via GDP-GTP exchange is modulated by guanine nucleotide exchange 

factors (GEFs) and GTPase-activating proteins (GAPs)72. GEFs promote the GTP-bound 

active state of Arfs, whereas GAPs enhance the intrinsic GTPase activity of Arfs, thereby 

promoting the GDP-bound inactive state. GEFs of Arfs can be placed into two categories: 

high molecular weight GEFs and low molecular weight GEFs. High molecular weight GEFs 

are divided into two subfamilies Gea/Gnom/GBF family and Sec7/BIG family all with a 

molecular weight >100kDa. Low molecular weight GEFs are divided into two subfamilies: 

Arf nucleotide-binding site opener (ARNO)Zcytohesin/ general receptor for 



phosphoinositides (GRP) family and the EFA6 family71'73. Brefeldin A, a fungal toxin, 

inhibits the activity of high molecular weight GEFs, but does not inhibit the activity of low 

molecular weight GEFs71'72. This dissertation indicates Arf6 is an important mediator in the 

SS signaling pathway. EFA6, GEF 100 and ARNO are the only known GEFs for Arf6. All of 

these are low molecular weight brefeldin A-insensitive GEFs. EFA6 is a 71-kDa protein that 

catalyzes the exchange of GDP from the Arf inactive state to its GTP-bound active state will 

be shown to play a role in SS-induced increase in PLD activity. The Sec 7 domain of EFA6 

and all other GEFs of Arfs enhance nucleotide exchange rate in Arfs71. Tandem to the Sec 7 

domain of the low molecular weight GEFs is a PH domain. The EFA6 family consists of 

four members, EFA6 A, B, C and D74. EFA6, also known as EFA6A, is the most extensively 

studied, and has been found predominately in the brains, but also in the colon, small 

intestine, and ovaries74. EFA6B is ubiquitously expressed in mammal tissues and has 

demonstrated Arf6 GEF activity in-vitro74. EFA6C and EFA6D have been identified as GEFs 

of Arf6 because of sequence homology and the presence of a tandem Sec 7 domain and PH 

domain72. Neither of these proteins has been analyzed to determine if they possess true GEF 
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A VP = 1 nM 
SS = 100nM 

A 
KRB 

• 
SS 

Figure 7. Effect of SS and/or A VP on [Ca2+]; in HIT-T15 
cells, which shows that SS in the presence of A VP 
increased [Ca2+]i (lower panel). These results suggest 
that SS increases PIP2, which serves as the substrate for 
A VP-activated PLC. Upper panel: No increase in [Ca2+]j 
was observed after 100 nM of SS treatment alone was 

Gi/0-coupIed receptors has 

SS did not induce a further increase in [Ca2+]jby A VP 
(right-hand panel). Traces are representative of 4 
experiments. Each line represents the result from 1.5 
million .cells. CFrom Biochem. J. (2002) 364: 33-39.) 

Crosstalk between Gai and 

Gaq: Signaling via GPCRs can 

lead to many cellular responses, 

ranging from regulation of 

hormone release to stimulation of 

gene transcription. Crosstalk 

between two GPCRs can lead to 

paradoxical cellular responses in 

many systems75. Signaling 

between Gq-coupled receptors 

been shown to produce a 

synergistic increase in [Ca2+]j in 

numerous cell types76'11 ' 78. Normally, activation of Gq-coupled receptors increases [CaZT]j 

via the PLC pathway, whereas activation of Gj/0-coupled receptors inhibits adenylyl 

,2+n 

cyclase79'80. However, when these receptors are activated concurrently, they produce a 

synergistic increase in [Ca2+]j via enhancement of PLC-(3 activity81'82'83'84'85,86. Various cell 

types have demonstrated the ability to perform this coincidental signal between numerous 

Gq- and Gj/0-coupled receptors (Table 1). This enhancement by Gj/0-coupled receptors is in 

part mediated by Gj/0-Py dimer87'88. We previously reported that in the presence of A VP, SS 

increased [Ca2+]j and evoked a paradoxical, transient release of insulin from HIT-T15 

cells81(Fig. 7). Pretreatment with SS for 100 s does not enhance A VP-induced increase in 
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[Ca2+]j. The focus of this dissertation is to determine the mechanism behind the paradoxical 

increase in [Ca2+]j. Others have found similar results using SS as a Gj/0-coupled receptor 

agonist. In SH-SY5Y cells, SS increases [Ca2+]; after pretreatment with carbachol, a 

cholinergic agonist, which signals via Gq 
89. In another (3-cell line RINmSF, 

cyclopentyladenosine, a Gi/0-coupled receptor agonist, does not increase [Ca2+], when 

administered alone, but increases [Ca2+]i after pretreatment with carbachol90. The crosstalk 

effects of SS with A VP in HIT-T15 cells are mediated by Gj/0, the PLC pathway and Ca2+ 

release from ER81. The increase in [Ca2+]j by SS is attributable to a crosstalk between Gq and 

Gj/o81. To date, studies examining crosstalk signals between Gq- and Gj/0-coupled receptors 

have been performed through quantification of inositol phosphates and/or [Ca2+]j87'88'89. In 

addition, antibodies raised against PLC-P isozymes91 or PLC inhibitors such as U-7312281 

have also been used to investigate the crosstalk mechanism of Gj/0-coupled SS receptors. The 

results from some of these studies suggest that the (By dimer of G,/0 directly activates PLC-|3 

86'90. However, in our previous study we found treatment with SS alone, even at a high 

concentration of 1 pM, failed to increase [Ca2+]j or insulin release81. Therefore, we set out to 

demonstrate in this dissertation that SS increases PIP2 synthesis in [3-cells, thereby increasing 

the substrate for preactivated PLC-(3 by A VP. Although others have suggested that 

enhancement of Gq signals by Gj/0 is through activation of PLC-(387 or interaction with a step 

after PLC activation88, none of them have attributed the effect of Gv0 to a step before PLC 

activation, except that Schmidt et al.92'93 suggested that Gj/0 mediates an increase in PIP2 

levels. In this dissertation SS treatment decreased PIP levels but increased PIP2 levels, 

suggesting that SS may increase PIP2 synthesis. Thus, we have suggested a novel mechanism 
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for cross-talk between Gq, and Gj/0. That SS can increase PEP2 synthesis, which in turn 

provides extra substrate for preactivated PLC-p by A VP to generate high levels of IP3. 

Without a preactivated PLC-P, SS failed to increase IP3 levels (Fig. 3) and [Ca2+]j81. In 

addition to the ability of SS to increase [Ca2+]j, SS also increases PIP2 levels within these 

cells. The ability of SS to increase PIP2 in p-cells gives rise to the exciting possibility that SS 

may contribute in cell signaling through the diverse action of PIP2 independent of the PLC 

pathway. 

The role of PIP2 in cellular regulation: 

PIP2 mediates various cell signaling processes in two distinct ways as an enzyme substrate 

and as an anchoring signaling lipid. PIP2 is converted into IP3 and phosphatidylinositol 3,4,5-

trisphospate (PIP3) and these enzymatic products that mediate many cellular signaling 

processes. Phosphatidylinositol 3-kinase phosphorylates PIP2 to form PIP3. PIP3 is a 

membrane lipid, which serves as a binding site for various proteins and mediates many 

downstream effects. The biochemistry of PIP3 has been reviewed in great detail elsewhere94. 

The most well-known use of PIP2 is as a substrate for PLC. PLC cleaves PIP2 into IP3 and 

diacylglycerol. The other way PIP2 mediates cellular process is as an anchoring signaling 

lipid. PIP2 is able to translocate cytosolic proteins to distinct membrane regions of the cell, 

providing region-specific microdomains on which signal transduction can occur95' 96. Many 

proteins contain specific phosphatidylinositide-binding domains. Five of these domains have 

been characterized, i.e., epsin amino-terminal homology (ENTH) domain, Fabl, YOTB, 

Vacl, and EEA1 (FYVE) domain, band 4.1, ezrin, radixin, and moesin (FERM) domain, 

pleckstrin homology (PH) domain and a phox homology (PX) domain97. The PH domain is a 

phosphatidylinositide-binding domain, which is the eleventh most common domain found in 
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humans97. Because of the vast number of proteins that contain phosphatidylinositide-binding 

domains, many proteins have the potential to utilize PIP2 as a membrane-anchoring lipid. 

These interactions can initiate a cascade of downstream reactions. For example, PIP2 

membrane anchoring property is responsible for many cellular processes such as clathrin-

mediated endocytosis98'99, actin rearrangement100'101, vesicle docking 102, and membrane 

ruffling103. While full potential of PDYs effects on cellular function has yet to be discovered, 

it is clear that PIP2 plays a vital role in many cellular processes. Understanding regulation of 

PIP2 synthesis within the cell will give a clear picture of the signaling pathways that utilize 

PIP2 as a signaling molecule. 

Regulation of PIP2 is tightly controlled by various kinases as well as phosphatases. In 

the classic synthesis pathway, PIP 5-kinase type 1 phosphorylates phosphatidylinositol 

(Ptdlns)104 towards the 5' terminus to form PtdIns(4,5)P2, representing the major route for 

PIP2 synthesis95. The conversion of PtdIns(5)P to form PtdIns(4,5)P2 through PIP 4-kinase, 

also known as PIP 5-kinase type 2, is the alternative route for PIP2 synthesis and is not as 

well understood as type 1 kinase acyivity. PIP 5-kinase type 1, the predominant enzyme for 

PIP2 synthesis, has 3 isoforms, a, p, y 105. PIP 5-kinase type 1 is activated by several input 

signals that include PLD and small G-proteins such as Rho, Rac, and Arf106'107 '108' Because 

of the ability SS to increase PIP2, regulators of PIP2 synthesis were investigated in this 

disseration. 

This dissertation will demonstrate the ability of the py-dimer coupled to SS receptor 

signal through EFA6, a guanine nuclear exchange factor, to activate the small G-protein 

Arf6. We further demonstrated that Arf6 will activate PLDl to hydro lyze PC to phosphatidic 

acid (PA). PA will stimulate PIP-5 Kinase to PIP to PIP2 (Fig. 1). We believe this novel 
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mechanism of cross-talk and new effectors for SS provide exciting insights to (3-cell 

signaling. 
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ABBREVIATIONS A VP, arginine vasopressin; ct-pARK, C-terminus of the p-adrenergic 

receptor kinase; DAG, diacylglycerol; ER, endoplasmic reticulum; fura-2AM, fura-2 

acetoxymethyl ester; GPCR, G protein-coupled receptor; IP3, inositol 1,4,5-trisphosphate; 

KRB, Krebs-Ringer bicarbonate buffer; PIP, phosphatidylinositol 4-phosphate; PIP2, 

phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C; PLD, phospholipase D; PA, 

phosphatide acid; PBt, phosphatidylbutanol; PC, phosphatidylcholine; PTX, pertussis toxin; 

RFU, relative fluorescent unit; zLYCK, carbobenzyloxy-leucine-tyrosine-

chloromethylketone. 

ABSTRACT 

In the presence of arginine vasopressin (AVP), somatostatin increases [Ca2+]j, leading to a 

transient increase in insulin release from clonal P-cells HIT-T15 via Gj/0 and phospholipase C 

(PLC) pathway (Cheng et al., 2002a). The present study was to elucidate the mechanisms 

underlying somatostatin-induced [Ca2+]i increase in the presence of A VP. We found the 

effect of somatostatin was mediated by Py subunits, but not by a subunit of Gj/0. Since 

somatostatin alone failed to increase [Ca2+],-, we hypothesized that somatostatin increases 

PIP2 synthesis, providing extra substrate for preactivated PLC-P to generate IP3. 

Somatostatin alone did not increase IP3 levels, but A VP + somatostatin did. Somatostatin 

increased PDP2 levels, but decreased PIP levels. We further hypothesized that PLD mediates 

somatostatin-induced changes in PIP2 levels. Both the phospholipase D (PLD) inhibitors and 

antibody vs. PLD1 antagonized AVP-somatostatin-induced increases in [Ca2+]j. PLD 

inhibitor also antagonized somatostatin-induced increase in PIP2 levels. In addition, 

somatostatin increased PLD activity. These results suggested that activation of somatostatin 

receptors that are coupled to the Py dimer of Gj/0 leads to PLD1 activation, thus promoting 
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receptors that are coupled to the Py dimer of Gj/0 leads to PLD1 activation, thus promoting 

the synthesis of phosphatidic acid. Since phosphatidic acid activates PJP-5 kinase, this 

evokes an increase in PIP2 synthesis. The PIP2 generated by somatostatin administration 

increases substrate for preactivated PLC-P, which hydrolyzes PIP2 to form IP3, leading to an 

increase in [Ca2+]j. The regulation of PIP2 synthesis by Gj/0-coupled receptors via PLD 

activation represents a novel signaling mechanism for somatostatin and a novel concept in 

the crosstalk between Gq- and Gj/0-coupled receptors in P-cells. 

INTRODUCTION 

Signaling via the large family of G protein-coupled receptors (GPCRs) can lead to many 

cellular responses, ranging from regulation of hormone release to stimulation of gene 

transcription. Crosstalk between two GPCRs can lead to paradoxical cellular responses. 

Signaling between Gq-coupled receptors and Gj/0-coupled receptors produces a synergistic 

increase in [Ca2+]j in numerous cell types (Muller and Lohse, 1995; Quitterer and Lohse, 

1999; Yeo et al., 2001). PLC is known to hydrolyze phosphatidylinositol 4,5-bisphosphate 

(PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 

(DAG). IP3 triggers Ca2+ release from the endoplasmic reticulum (ER), whereas DAG 

activates protein kinase C (Berridge et al., 1984; Nishizuka, 1984). Normally, activation of 

Gq-coupled receptors increases [Ca2+]; via the PLC pathway, whereas activation of G;/0-

coupled receptors inhibits adenylyl cyclase (Patel et al., 1994; Rhee, 2001). However, when 

these receptors are stimulated concurrently, they produce a synergistic increase in [Ca2+]j via 

enhancement of PLC-P activity (Muller and Lohse, 1995; Quitterer and Lohse, 1999; Yeo et 

al., 2001). This enhancement by Gi/o-coupled receptors is mediated by Gi/0~Py dimer (Selbie 

et al., 1997; Quitterer & Lohse, 1999; Chan et al., 2000). 
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Recently, we reported that in the presence of A VP, somatostatin increased [Ca2+], and 

evoked a paradoxical, transient insulin release from HIT-T15 cells (Cheng et al., 2002a). 

Pretreatment with somatostatin for 100 s does not enhance A VP-induced increase in [Ca2+]j 

(Cheng et al., 2002a). Others have found similar results using somatostatin as a Gj/0-coupled 

receptor agonist. For example, in SH-SY5Y cells, somatostatin increases [Ca2+]j after 

pretreatment with carbachol, a cholinergic agonist, which signals via Gq (Connor et al., 

1997). In another (3-cell line RINmSF, cyclopentyladenosine, a Gj/0-coupled receptor agonist, 

does not increase [Ca2+]j when administered alone, but increases [Ca2+]j after pretreatment 

with carbachol (Biden and Browne, 1993). The crosstalk effects of somatostatin with A VP 

in HIT-T15 cells are mediated by Gj/0, the PLC pathway and Ca2+ release from ER (Cheng et 

al., 2002a). The increase in [Ca2+], by somatostatin is attributable to a crosstalk between Gq 

and Gi/o (Cheng et al., 2002a). To date, most of the studies examining crosstalk signals 

between Gq- and Gi/0-coupled receptors have been performed through quantification of 

inositol phosphates and/or [Ca2+]j (Selbie et al., 1997; Chan et al., 2000; Yeo et al., 2001). In 

addition, antibodies vs. PLC-P isozymes (Murthy et al., 1996) or PLC inhibitors such as U-

73122 (Cheng et al., 2002a) have also been used to investigate the crosstalk mechanism of 

Gj/o-coupled somatostatin receptors. The results from some of these studies suggest that the 

Py dimer of Gj/0 directly activates PLC-P (Murthy et al., 1996; Chan et al., 2000). However, 

in our previous study, treatment with somatostatin alone, even at a high concentration of 1 

pM, failed to increase [Ca2+]j or insulin release (Cheng et al., 2002a). We, therefore, 

hypothesized that somatostatin increases PIP2 synthesis in P-cells, thereby increasing the 

substrate for preactivated PLC-P by A VP. In addition, we hypothesized that somatostatin 



activates PLD to increase the synthesis of phosphatidic acid, which in turn activates PIP-5 

kinase to increase PrP2 synthesis. 

Our present findings indicate that somatostatin alone cannot increase IP3 production. In 

addition, somatostatin-induced increase in XP3 and [Ca2+]j in the presence of A VP is 

mediated through the GPy-dimer of Gj/0, an increase in PLD activity, and a subsequent 

increase in PIP2 synthesis. 

MATERIALS AND METHODS 

Materials. All reagents were purchased from Sigma Chemical (St. Louis, MO), except that 

fura-2 acetoxymethyl ester (fura-2AM) was from Molecular Probes (Eugene, OR), and rabbit 

polyclonal antibodies vs. Ga,i/Gaj2 and Gaj3/Ga0, and Gp were from Biomol (Plymouth 

Meeting, PA), myo-[2-^H]inositol and y-32P-ATP were from PerkinElmer Life Sciences 

(Boston, MA). 

Cell Culture and Transfection. HIT-T15 cells were maintained in RPMI 1640 with 10 % 

FBS and aerated with 5 % COz-95 % air at 37°C. All experiments were performed using 

cells from passages 80-90. For Over-expression of the C-terminus of the P-adrenergic 

receptor kinase (ctpARK), HIT-T15 cells were transacted with pcDNAIIIB TSpark plasmid 

(donated by Dr. Silvio Gutkind, NEH), using Lipofectamine™ (Invitrogen, Carlsbad, CA) 

and according to the manufacturer's protocol. 

Measurement of [Ca2+]i in Single Cells. [Ca2+]j was measured as previously described 

(ZhuGe and Hsu, 1995). Cells were loaded with 2 jaM fura-2AM in Krebs-Ringer 

bicarbonate buffer (KRB) for 30 min at 37°C. Measurement was performed in custom-made 

35-mm culture dishes or a 20 mm X 20 mm peri fusion chamber on the stage of an inverted 



47 

fluorescence microscope (Carl Zeiss). Fluorescence images were obtained (Aex
=:340 and 380 

nm; Aem=510 ± 20 nm), background subtracted, and divided on a pixel-by-pixel basis to 

generate spatially resolved maps of the [Ca2+]j. The emitted signals were digitalized, 

recorded and processed using Attofluor Digital Fluorescence Imaging System (Atto 

Instruments, Rockville, MD). The [Ca2+]j was calculated according to a previously published 

method (Grynkiewicz et al., 1985). Calibration was performed according the procedure 

provided by Attofluor, using fura-2 penta K+ as a standard. 

Measurement of [Ca2+]j in Transfected Cells. T813 ARK-transfected HIT-T15 cells were 

seeded into black-walled clear-base poly-D-lysine-coated 96-well plates (Costar, Coming) at 

a density of 105 cells per well in RPMI 1640, supplemented as described above, and cultured 

overnight. The cells were then incubated with FLEPR Calcium 3™ Assay Kit (Molecular 

Devices, Sunnyvale, CA) at 37°C for 60 min. After incubation, the plates were inserted into a 

fluorometric imaging plate reader (FLEXstation®II, Molecular Devices), and the 

fluorescence at AeX=488 nm, and \m=515-535 nm was used to monitor changes in [Ca2+]j. 

Data were expressed as percent increase of relative fluorescent units (RFU) / baseline RFU 

using Softmax Pro™. 

Microinjection Protocol. Single cells were grown for 2 days on glass coverslips of 

custom-made 35-mm culture dishes. Thereafter, cells were loaded with fura-2AM, mounted 

on the stage of an inverted microscope. For microinjection of antibodies, two cells from each 

dish were injected with intracellular buffer and rabbit antibodies respectively, using a 

disposable glass pipette (VWR Scientific, West Chester, PA) held by a Narishige MW-3 

micromanipulator. Pipettes were made by a PE-2 Micropipette puller (Narishige Scientific 

Instrument, Tokyo, Japan). All antibodies were diluted at 1:100 with intracellular buffer 
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solution containing (in mM): K2HP04 27; NaH2P04 8; KH2PO4 26; pH 7.3. Injection 

pressure was controlled by a pressure injection system (Picospritzer II, General Valve, 

Fairfield, NJ). A 30-min incubation period was allowed between the antibody injection and 

[Ca2+]j measurement. For microinjection of PIP2, one cell from each dish was injected with 

Na+ salt of PIP2, which had been dissolved and further diluted in intracellular buffer at the 

respective PIP2 concentration or buffer alone as the control. Microinjection of PIP2, PIP, and 

PA was performed at 100 s following the perfusion with A VP into the culture dish. At the 

end of each experiment, the cell was depolarized with 10 mM KC1 to test membrane 

integrity. 

Determination of PIP and PIP2. PIP and PIP2 levels were measured using thin layer 

chromatography as previously described (Norris and Majerus, 1994). HIT-T15 cells were 

labeled with 200 p.Ci/ml of y-32P-ATP in phosphate-free KRJB for 60 min and washed twice 

with centrifugation at 300 x g for 2 min. For experiments, cells were resuspended at a 

density of 15 x 106 cells/ml/treatment. The reactions were terminated by addition of 1 ml ice 

cold 1 N HC1. Phospholipids were separated by a chloroform methanol (1:1) mixture. The 

lower phase was dried under a stream of nitrogen, resuspended in 200-500 p.1 

chloroform:methanol (1:1) mixture, and spotted on silica gel plates. PIP and PIP2 were 

identified by co-migration with unlabeled standards, which were visualized by iodine 

staining and radiograph. One-cm blocks of the corresponding lanes for the samples were 

subsequently scraped and radioactivity was quantified by liquid scintillation counting. 

Determination of IP3. Measurement of inositol phosphates followed modified procedures 

from a published report (Hoque et al., 2001). Cells were labeled with 20 (j.Ci/ml of myo-[2-
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3H]inositol at 37°C for 90 min by which time the incorporation of 3H into inositol lipids had 

reached a plateau (Hoque et al., 2001). 

Cells were washed twice in phosphate-free KRB and centrifuged at 300 x g for 2 min. For 

experiments, cells were resuspended at a density of 20 x 106 cells/ml/treatment. The 

reactions were terminated by addition of 0.5 ml of ice cold 10% trichloroacetic acid and 

samples centrifuged at 3,000 x g for 20 min at 4°C. The supematants were passed through a 

200-400 mesh Dowex AG1-X 8 in formate form column (Bio-Rad Laboratories, Hercules, 

CA). Inositol phosphates were eluted by stepwise addition of 0.2, 0.5, and 1 M ammonium 

formate, which yielded IP,, IP2, and IP3, respectively. Radioactivity associated with IP3 from 

each sample was quantified by liquid scintillation counting. 

Determination of PLD Activity. PLD assay was performed using a previously described 

method (O'Launaigh et al., 2002). Briefly, HIT-T15 cells were grown in 24-well plates 

overnight in RPMI 1640 medium with 10% FBS. The medium was then discarded and 500 (_tl 

of 3 jo.Ci/ml of [3H]myristic acid was added to each well for 60 min. Cells were then washed 

twice with KRB and 400 p.1 of KRB was added to each well. Treatments were applied 15 s 

after the addition of 0.5% 1-butanol. The reactions were terminated 30 s after treatment had 

been administered. Phosphatidylcholine (PC) and phosphatidylbutanol (PBt) were identified 

by migration with unlabeled standards, which were visualized by iodine staining and 

radiograph. One-cm blocks of the corresponding lanes for the samples were subsequently 

scraped and radioactivity was quantified by liquid scintillation counting. 

Intracellular Delivery of antibodies vs. PLD. This technique was performed using 

BioPORTER™ protein delivery reagent (Gene Therapy Systems, San Diego, CA). 

Undiluted PLD antibodies, a gift from Dr. Sylvain Bourgoin of the University of Laval, 
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Canada, were delivered into HIT-T15 cells following manufacturer's protocol. Briefly, HIT-

T15 cells were plated on a glass coverslip of custom-made 3 5-mm culture dish. Antibody vs. 

PLD (2 |ng) (or normal rabbit plasma as control) was mixed with 1.5 jj.1 of the protein 

delivery reagent and 150 (J.1 of FBS-free RPMI medium and added to each well. The cells 

were incubated at 37°C for 4 h. The culture medium was then removed and replaced by 

KRB. Thereafter, cells were loaded with fura-2AM and determination of single cell [Ca2+]j 

was performed as mentioned above. 

Western Blot Analysis of PLD. PLD protein levels were determined by Western blot 

analysis. Ten pg of whole cell protein of HIT-T15 was separated by reduced SDS-PAGE 

(10%). Protein was transferred to PVDF membranes in transfer buffer (35 mM Tris, 190 

mM glycine, 20% methanol). The PVDF membranes were blocked with 5% non-fat dry milk 

in PBS for 1 h at room temperature. The primary PLD antibodies were diluted 1:30 in wash 

buffer (0.01% Tween 20 in PBS) and incubated with the PVDF membranes for 1 h at room 

temperature. The blots were washed 3 times for 10 min each with wash buffer. The 

secondary antibody (goat anti-rabbit IgG conjugated to horseradish peroxidase, Pierce, 

Rockford, IL) was diluted 1:2,000 in wash buffer and incubated with the PVDF membranes 

for 1 h at room temperature. The blots were then washed and developed using 

diaminobenzidine. 

Data Analyses. All values are presented as mean ± SE. Results were analyzed using 

ANOVA and individual mean comparisons were made using the Least Significant Difference 

test. The significance level was set atp < 0.05. 
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RESULTS 

Mediation by G0y of somatostatin-induced Increase in [Ca2+]j in the Presence of AVP. 

The Gj/o-Py dimer has been demonstrated to be the essential subunits of the G protein, which 

elicit this synergistic increase in [Ca2+]j in the presence of Gq activation (Selbie et al., 1997; 

Quitterer and Lohse, 1999; Chan et al., 2000). In order to determine if our cell system is also 

dependent on Gj/0-Py dimer, we microinjected antibodies vs. G;/0 subunits into single cells in 

the presence of 1 nM AVP and then treated the cells with somatostatin (100 nM) to induce an 

increase in [Ca2+]j. Antibody (1:100) vs. GP reduced the response to somatostatin by 89 % (p 

< 0.05). In contrast, antibodies vs.Go^/Go^ or Ga^/Gcio (1:100) did not significantly 

change the response to somatostatin (Fig. 1). To further demonstrate the involvement of Gj/0-

Py dimer, ct-PARK was expressed in HIT-T-15 cells. Expressing ct-PARK has been shown 

to sequester GPy, thereby inhibiting its ability to stimulate downstream mediators (Inglese et 

al., 1992; Koch et al., 1994). Protein expression of the myc-tagged ct-PARK was determined 

by immunocytochemistry using anti-myc monoclonal antibody with 80-90% of HIT T-15 

cells expressing the myc epitope (data not shown). When ct-PARK was expressed in HIT-

T15 cells, it dramatically reduced somatostatin (100 nM)-induced increase in [Ca2+]j in the 

presence of AVP (1 nM). In mock transfected HIT-T15 cells, somatostatin in the presence of 

AVP caused a 81% ± 14% increase in RFU/baseline RFU, while cells that expressed ct-

PARK only elicited 14 % ± 9% increase in RFU/ baseline RFU when stimulated by AVP-

somatostatin. All cells responded to 10 mM KC1 by increasing [Ca2+]j (data not shown). 

These results suggested that Gj/0-py dimer is essential for the somatostatin-induced increase 

in [Ca2+]j in the presence of AVP. 



Somatostatin- and A VP-Induced Increase in IP3 Levels. Somatostatin alone was unable to 

elicit any increase in [Ca2+]j in HIT-T15 cells (Cheng et al., 2002a). We then hypothesized 

that somatostatin does not directly activate PLC-|3. We first determined the time course in 

which somatostatin + AVP produced the highest IP3 levels. In the presence of AVP (1 nM), 

somatosta t in  (100 nM) increased I P 3  levels  af ter  10-12 s  of  adminis t ra t ion (Fig .  2A,p < 

0.05). We then utilized this time frame to compare IP3 levels among 4 treatment groups, 

terminating all reactions at 12 s post-somatostatin administration. Somatostatin (100 nM) 

alone failed to increase IP3 levels. AVP (1 nM) alone induced a small, but significant 

increase in IP3 levels (Fig. 2B). In cells pretreated with AVP (1 nM) for 100 s, followed by 

somatostatin (100 nM), IP3 levels were the highest among 4 treatment groups. These results 

suggested that somatostatin alone cannot activate PLC-p in HIT-T15 cells, since it did not 

increase IP3 levels. AVP (1 nM) alone increased IP3 levels in these cells, and concurrent 

administration of AVP and somatostatin caused a synergistic increase in IP3 levels. 

Somatostatin-induced Increase in PIP2 and Decrease in PIP Levels. Since somatostatin 

alone was unable to increase IP3 levels in HIT-T15 cells, we hypothesized that somatostatin 

increases PIP2 synthesis, which in turn provides more substrate for pre-activated PLC-P by 

AVP. If this hypothesis is correct, injection of PIP2 into single cells in the presence of 1 nM 

AVP should increase [Ca2+]j in a similar manner to somatostatin administration. In the 

control group, microinjection of intracellular buffer into single cells did not increase [Ca2+]j 

in the presence of AVP (Fig. 3). In the presence of AVP, microinjection of PEP2 (5 - 50 

amol) increased [Ca2+]j in a concentration-dependent manner. In the absence of AVP, PIP2 at 

the highest concentration studied (50 amol) failed to increase [Ca2+]j (data not shown). Also, 

in the presence of AVP (1 nM), microinjection of PIP (50 amol) was unable to increase 
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[Ca2+]j (data not shown). These results are consistent with our hypothesis that somatostatin 

increases PIP2 levels, providing more substrate for preactivated PLC-P to synthesize IP3 and 

increase [Ca2+]j. Again, all cells responded to 10 mM KC1 by increasing [Ca2+]; (data not 

shown). 

We determined if AVP-somatostatin increased PIP2 levels and the time course of this 

increase. In the presence of 1 nM AVP, 100 nM somatostatin increased PIP2 at 8 s post-

somatostatin administration (p < 0.05) (Fig. 4A). In addition, there was a decrease in PIP 

levels, the precursor for PIP2, at 8 s post-somatostatin administration (p <0.05). We then 

utilized this time frame to compared PIP2/PIP levels among 4 treatment groups. 

We determined if somatostatin increases PIP2 and decreases PIP levels in the presence and 

absence of AVP. Somatostatin (100 nM) increased PIP2 and decreased PIP levels in the 

presence and absence of 1 nM AVP (p < 0.05), compared to basal controls (Fig. 4B & 4C). 

AVP alone failed to alter PIP2 or PIP levels. Since somatostatin with or without AVP 

decreased PIP levels but increased PIP2 levels, these findings suggested that somatostatin 

increase the synthesis of PIP2 from PIP or decrease the breakdown of PIP2 to PIP. 

Somatostatin-induced Increase in PLD Activity. PIP2 synthesis is catalyzed 

predominantly by phosphatidylinositol 4-phosphate (PIP) 5-kinase (Hawkins et al., 1992), 

which is activated by several input signals including PLD (Jenkins et al., 1994). PLD 

converts PC into phosphatidic acid (PA), which is known to activate PIP 5-kinase. We 

hypothesized that somatostatin stimulates PLD to increase PA formation, thereby activating 

PIP 5-kinase to increase PEP2 synthesis. Somatostatin (100 nM) increased PLD activity by 

two-fold over the control group (p< 0.05, Fig. 5A). In contrast, 100 nM AVP did not 

increase PLD activity (Fig. 5A). Pretreatment of HIT-T15 cells with pertussis toxin (PTX, 
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100 ng/ml) for 14-18 h abolished somatostatin (100 nM)-induced activation of PLD (p<0.05, 

Fig. 5B), suggesting a Gj/0-coupled receptor-mediated response. HIT-T15 cells that 

expressed ct-(3ARK domain was able to abolish somatostatin (100 nM)-induced activation of 

PLD (p<0.05, Fig. 5C). In order to demonstrate that activation of PLD can lead to an 

increase in PIP2 levels, which can be utilized by PLC as a substrate to promote IP3 

production and a subsequent increase in [Ca2+]j, we microinjected PA into HIT-T15 cells. 

Microinjection of PA (10 amol) in the absence of AVP (1 nM) produced no changes in 

[Ca2+]i; however, in the presence of AVP, it increased [Ca2+]j (A[Ca2+]j: PA: 2.1 ± 0.8 nM; 

AVP + PA: 39.1 ± 8.8 nM, n = 10 cells, p<0.05). To determine if somatostatin's ability to 

increase PLD activity has an impact on PIP2 levels and its subsequent increase in [Ca2+]j, we 

used 1-butanol, a PLD inhibitor, to determine its effects on somatostatin-induced increase in 

PIP2 levels. Pretreatment of cells with 1-butanol (0.5%) abolished somatostatin-induced 

increase in PIP2 levels (p<0.05. Fig. 6), but pretreatment with 2-butanol (0.5%), an inactive 

constitutional isomer of 1-butanol, did not (Fig. 6). To further demonstrate the involvement 

of PLD in AVP+somatostatin-induced increase in [Ca2+]j, cells were pretreated with PLD 

inhibitor 1-butanol. 1-butanol (0.5%) abolished AVP+somatostatin-induced increase in 

[Ca2+]j, but 2-butanol (0.5%), did not (Fig. 7). Pretreatment with another PLD inhibitor 

carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK, 10 |_iM) (Kessels et al., 1991) 

also abolished AVP+somatostatin-induced increase in [Ca2+]j (Fig. 8). A high concentration 

of AVP (100 nM) caused an increase in both the control and zLYCK-pretreated cells (Fig. 8), 

suggesting that zLYCK does not inhibit Gq-PLC signaling pathway. To further classify PLD 

involvement in this pathway, we used antibodies vs. PLD1 and PLD2, respectively, to 

determine which PLD isoform was responsible for the paradoxical increase in [Ca2+]; caused 
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by AVP-somatostatin. Only PLD1 was detected in HIT-T15 cells using Western blot 

analysis (Fig. 9, inset). Antibody vs. PLD1 inhibited somatostatin-induced [Ca2+]j increase in 

the presence of AVP, while antibody vs. PLD2 did not (Fig. 9). These results suggested that 

PLD1 mediates somatostatin-induced increases in PIP2. 

DISCUSSION 

Previously, we reported in clonal (3-cells HIT-T15 that somatostatin increased [Ca2+]j and 

transiently stimulated insulin release in the presence of AVP (Cheng et al., 2002a). These 

effects of somatostatin in HIT-T15 cell are due to activation of sstr2 (Cheng et al., 2002b), 

and are attributable to a crosstalk between Gj/0 and Gq (Cheng et al., 2002a). Crosstalks 

between Gq- and Gj/0-coupled receptors have been reported in other systems. For example, 

activation of G;/0-coupled adenosine A;-receptors enhances the stimulation of PLC-(3 by Gq-

coupled receptors such as ai-adrenergic, bradykinin, histamine Hi, and muscarinic receptors 

(Selbie and Hill, 1998). For such a crosstalk, activation of Gj/0 alone usually has no effect, 

but it enhances Gq-mediated increases in PLC-(3 activity, particularly when Gq is activated 

before Gj/0 (Muller and Lohse, 1995; Connor et al., 1997; Quitterer and Lohse, 1999; Yeo et 

al., 2001). Activation of Gj/0-coupled adenosine Ai-receptors, ot2-adrenoceptors in COS cells 

(Quitterer and Lohse, 1999) or 5- or K-opioid receptors in SH-SY5Y cells (Yeo et al., 2001) 

enhances inositol phosphate formation generated by activation of Gq-coupled receptors. In 

CHO cells, neuropeptide Y, a Gj/0-coupled receptor agonist, enhances inositol phosphate 

formation generated by ATP, a Gq-coupled receptor agonist (Selbie et al., 1997). 

Somatostatin also increases [Ca2+]j after activation of the Gq-coupled muscarinic receptors in 

SH-SY5Y cells (Connor et al., 1997). 
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To date, studies on the crosstalk between Gq and Gj/0 indicate that GPy of Gj/0 is responsible 

for the enhancement of Gq-generated signals (Selbie et al., 1997; Quitterer and Lohse, 1999; 

Chan et al., 2000). We demonstrated that antibody vs. Gp nearly abolished somatostatin-

induced increase in [Ca2+]j, whereas antibodies vs. Can/Go^ and Gai3/Ga0 failed to do so. 

In addition, over-expressing ct-PARK, which binds avidly to GPy (Inglese et al., 1992; Koch 

et al., 1994), greatly reduced somatostatin-induced increases in [Ca2+];. Our findings are 

consistent with what are in the literature (Selbie et al., 1997; Quitterer and Lohse, 1999; Chan 

et al., 2000), and further suggest that in P-cells, the increase in [Ca2+]j by somatostatin is 

mediated through GPy. 

Several studies have shown that GPy of Gj/0 can activate a number of enzymes, including 

PLC-P (Blake et al, 2001), PLA2 (Kim et al., 1989), mitogen-activated protein kinase (Koch 

et al., 1994), Raf-1 (Pumiglia et al., 1995), PARK (Goldman et al., 1997), 

phosphatidylinositol 3-kinase (Lopez-Ilasaca et al., 1998) and adenylyl cyclase (Myung and 

Garrison, 2000). In intestinal smooth muscle cells, somatostatin alone activates PLC-Ps, 

thereby increasing IP3 levels, [Ca2+]j and contractions through the GPy of Gj/o (Murthy et al., 

1996). 

Although others have suggested that enhancement of Gq signals by Gj/0 is through 

activation of PLC-P (Chan et al., 2000) or interaction with a step after PLC activation (Yeo et 

al., 2001), none of them have attributed the effect of G;/0 to a step before PLC activation, 

except that Schmidt et al. (1996 and 1998) suggested that Gj/0 mediates an increase in PIP2 

levels. In the present study with HIT-T15 cells, after somatostatin treatment, PIP levels 

decreased but PIP2 levels increased, suggesting that somatostatin may increase PIP2 



synthesis. Thus, we have suggested for the first time that somatostatin can increase PIP2 

synthesis, which in turn provides extra substrate for preactivated PLC-(3 by AVP to generate 

high levels of IP3. Without a preactivated PLC-P, somatostatin failed to increase IP3 levels 

(Fig. 3) and [Ca2+]j (Cheng et al., 2002a). However, we cannot rule out the possibility that 

the increase in PIP2 and decrease in PIP levels might have been due to a decrease in 

phosphatase activity. In addition, since the IP3 assay that we used in the present study could 

not differentiate inositol 1,3,4-trisphosphate from 1,4,5-trisphosphate, some of the IP3 

observed in the present study could be attributable to inositol 1,3,4-trisphosphate. 

Nevertheless, our results are consistent with the findings using cyclopentyladenosine, an 

adenosine Aj-receptor agonist, in RINmSF cells, another P-cell line (Biden and Browne, 

1993). In RINmSF cells, activation of adenosine Aj-receptors alone fails to increase IP3 

levels and [Ca2+]j, but increases them after activation of M3 receptors (Biden and Browne, 

1993). Our findings are further supported by those of the administration of PIP2 into the 

cells, in which PLP2 alone failed to increase [Ca2+]j, but PIP2 in the presence of a small 

concentration of AVP (1 nM) increased [Ca2+]j. Because PIP2 and PIP failed to increase 

[Ca2+]j in the absence of AVP (1 nM), we believe that these phospholipids are unable to elicit 

any [Ca2+]i response inHIT-T15 cells. The failure of microinjected PIP (50 amol) to induce 

changes in [Ca2+]j in the presence of AVP (1 nM) demonstrated that the microinjection of 

PIP2 in the presences of AVP, which caused an increase in [Ca2+]j, was due to PDYs usage as 

a substrate for low-grade PLC activation and not an artifact of the system. In HEK 293 cells 

with stable expression of M3 receptors, carbachol increases PIP2 levels for at least 30 min 

(Schmidt et al., 1996). The M3 receptor-mediated increase in PrP2 levels is attributable to Gj-

protein coupling, since this effect was inhibited by PTX pretreatment. In HEK 293 cells, 



activation of plasma membrane purinergic receptors and lysophosphatidic acid receptors, 

respectively, also increases PIP2 levels for >40 min (Schmidt et al., 1998). These findings 

are somewhat different from those of ours, since somatostatin-induced increase in PIP2 levels 

in HIT-T15 cells lasted <12 s, but the effect of Gj/0-coupled receptor agonists in HEK 293 

cells lasted >40 min. It is not clear why these two systems are so much different in terms of 

the duration of the agonist-induced PIP2 levels. However, in the study with HEK 293 cells, 

for preactivation of PLC, Schmidt et al. used Gq-coupled receptor agonists, which markedly 

lowered PIP2 levels. Upon removal of the agonists, the P1P2 levels increased again, which 

were above the initial control levels (Personal communications from Dr. K. H. Jakobs). 

In the present study, we demonstrated for the first time that somatostatin can increase PLD 

activity. This effect of somatostatin was PTX-sensitive, and was blocked by expression of 

ct-(3ARK, suggesting that Gi/o-Py dimer mediates this effect of somatostatin. We further 

hypothesized that somatostatin-induced increase in PLD activity mediates the increase in 

PIP2 formation, since PLD is the enzyme that catalyzes the formation of PA, which may in 

turn activates PIP 5-kinase to increase PIP2 synthesis (Hawkins et al., 1992). In the present 

study, we demonstrated that microinjection of PA increased [Ca2+]j, which has been used as 

an indicator for IP3 increase. In addition, PLD inhibitors, 1-butanol and zLYCK, and 

antibody vs. PLD1 all blocked somatostatin-induced [Ca2+]j increase in the presence of AVP. 

1 -Butanol further abolished somatostatin-induced PIP2 increase. Therefore, the present 

findings strongly supported the notion that somatostatin increases PA synthesis, which in 

turn activates PIP-5 kinase, the enzyme catalyzing the formation of PIP2. 

In this system somatostatin was able to increase PIP2 levels, providing extra substrate for 

PLC-P. On the other hand, PIP2 can regulate a wide range of cellular processes, including 



exocytosis (Cremona and De Camilli, 2001), clathrin-mediated endocytosis (Gillooly and 

Stenmark, 2001), actin rearrangement (Tolias et al., 2000), vesicle docking (Brown et al., 

2001), opening of G-protein-gated inwardly rectifying K+ channels (Zhang et al., 1999), KATP 

channels (Baukrowitz et al., 1998), membrane ruffling and trafficking (Honda et al., 1999). 

Because of the diverse role of PIP? in cellular processes, it is uncertain what impact 

somatostatin-induced increase in PLD activity and its subsequent increase in PIP2 levels have 

on normal physiology of P-cells. 

In the present study, when AVP was needed to cause a low-grade PLC activation, we used 

1 nM AVP in most of the experiments. This concentration of AVP usually caused an 

increase in [Ca2+]j of 0-50 nM, which was consistent with our previous study (Cheng et al., 

2002a). However, in the experiment where butanols were studied (Fig. 7), AVP at 1 nM 

increased [Ca2+]j by -90 nM. In this particular experiment, probably due to different FBS 

used in cell culture, the cells became more responsive to AVP than usual. As a result of the 

hyperresponse to AVP, somatostatin-induced [Ca2+]j increase was attenuated. This 

phenomenon was also seen in our previous study (Cheng et al., 2002a). 

In summary, we have demonstrated a novel signaling mechanism for somatostatin. The 

activation of somatostatin receptors, which are coupled to Gj/0, leads to an increase in PIP2 

synthesis through GPy activation of PLD. The PIP2 generated by somatostatin administration 

provides extra substrate for preactivated PLC-P, which hydrolyzes PIP2, thereby increasing 

IP3 levels, [Ca2+]j and a transient release of insulin from HIT-T15 cells (Fig. 10). This is the 

first report regarding somatostatin-induced increase in PLD activity and PIP2 synthesis by 

activation of Gi/0-coupled receptors. 
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LEGENDS FOR FIGURES 

Fig. 1. Effect of antibodies vs. G,/0 subunits on somatostatin (SS)-induced increase in [Ca2+]j 

in the presence of AVP in HIT-T15 cells. 1A) Antibodies vs. G(3, Gan/Gai2 and Gc^/Goo, 

respectively, were diluted 1:100 and micro injected into single cells followed by a 30-min 

incubation period and Ca2+ image analysis. 100 nM somatostatin was given 100 s following 

administration of AVP (1 nM). Baseline [Ca2+]; were approximately 100 nM. Values are the 

mean ± SE; n=10 cells/treatment from 3 independent cell preparations. */?<().05 compared to 

somatostatin controls. IB) Representative calcium trace of microinjected antibodies vs. G(3, 

in the presence of AVP, inhibited SS induced increase in [Ca2+]j. 1C-D) Representative 

calcium traces of microinjected antibodies vs. Go^/Go^ and Ga^/Gcco, respectively, in the 

presence of AVP, did not inhibited SS induced increase in [Ca2+]j. 

Fig. 2. Somatostatin(SS)-induced increase in IP3 levels in the presence and absence of AVP 

in HIT-T15 cells. A) Time course of AVP-somatostatin induced increase in IP3 levels, as 

determined by ion-exchange chromatography. Somatostatin (100 nM) was given 100 s after 

AVP (1 nM) and experiments terminated at the respective time; */><0.05 compared to 0 s 

(n=3). B) Determination of IP3 levels among 4 treatment groups. Somatostatin (100 nM) 

was applied 100 s after AVP (1 nM); experiment was terminated at 12 s of somatostatin 

treatment; */?<0.05 compared to basal controls. Values are the mean ± SE (n=4 independent 

cell preparations). 

Fig. 3. Effect of PIP2 microinjection on [Ca2+]j in the presence of AVP in HIT-T15 cells. 

3A) Administration of PIP2 (1.5-50 amol) into single cells increased [Ca2+]; in a dose-



dependent manner after 100 s of AVP (1 nM). Values are the mean ± SE; n=3 independent 

cell preparations, (data not shown).3B) Representative calcium trace of HIT T-15 cells 

microinjected with intracellular buffer after the addition AVP not increase [Ca2+]j.. 3C) 

Representative calcium trace of HIT-T15 cells microinjected with PIP2 alone at 50 amol did 

not increase [Ca2+],-. 3D) Representative calcium trace of HIT-T15 cells microinjected with 

1.5 amol of PIP2 after the addition of AVP did not increase [Ca2+]j. 3E-G) Representative 

calcium traces of microinjected PIP2 (5 amol, 15 amol, 50 amol, respectively) did increase 

[Ca2+]j, while in the presence of AVP in a dose dependent manner. 

Fig. 4. Somatostatin(SS)-induced changes in PIP and PEP2 levels in HIT-T15 cells. PIP and 

PIP2 levels were determined by thin layer chromatography. Values are the mean ± SE. A) 

Time course for changes in PIP and PIP2 levels by somatostatin in the presence of AVP. 

Somatostatin (100 nM) was administered 100 s after AVP (1 nM); experiment was 

terminated at the respective time. n=3 independent cell preparations. *p<0.05 compared to 0 

s. B) and C). Somatostatin-induced changes in PIP and PIP2 levels in the presence and 

absence of AVP. PIP2 (B) and PEP (C) levels were determined after exposure to different 

treatments. Somatostatin (100 nM) was applied 100 s after AVP (1 nM) and experiments 

terminated at 8 s post-somatostatin administration. n=4 independent cell preparations. 

*p<0.05 compared to basal controls. 

Fig. 5. Somatostatin(SS)-induced increase in PLD activity in HIT-T15 cells. Experiments 

were terminated 30 s after somatostatin or AVP had been administered. A) Effect of 

somatostatin and AVP. B) Effect of pertussis toxin (PTX). HIT-T15 cells were pretreated 
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overnight with PTX (100 ng/ml) prior to treatments. C) Effect of ct-|3ARK expression on 

somatostatin-induced increase on PLD activity. HIT-T15 cells were transfected 24 h prior to 

PLD assay. Values are the mean ± SE (n=4 independent cell preparations). *p < 0.05 

compared to controls. PBt = phosphatidylbutanol, PC=phosphatidylcholine. 

Fig. 6. Effect of 1 -butanol and 2-butanol on somatostatin(SS)-induced increase in PEP2 

levels. HIT-T15 cells were pretreated with 0.5% 1-butanol or 2-butanol 5 min prior to 

somatostatin treatment. Experiments were terminated at 8 s post-somatostatin 

administration. Values are the mean ± SE; n=4 independent cell preparations. *p<0.05 

compared to basal controls. 

Fig. 7. Effect of 1-butanol and 2-butanol on somatostatin^S)-induced (100 nM) increase in 

[Ca2+]i in the presence of AVP (1 nM). HIT-T15 cells were pretreated with 1-butanol or 2-

butanol (0.5%) 5 min prior to treatments. Cells treated with 1 -butanol or 2-butanol were 

exposed to AVP (1 nM) for 150 s before the addition of somatostatin. Each line depicts the 

mean from 8-14 cells. The lines are representative of 4 independent experiments. 

Fig. 8. Effect of zLYCK on somatostatin(SS)-induced (100 nM) increase in [Ca2+]j in the 

presence of AVP (1 nM). HIT-T15 cells were pretreated with zLYCK (10 pM) 60 min prior 

to treatments. Control and zLYCK-treated cells were exposed to AVP (1 nM) for 120 s 

before the addition of somatostatin. After the 60-s co-exposure to AVP (1 nM) and 

somatostatin, cells were peri fused with KRB for 120 s before the addition of 100 nM of 
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AVP. Each line depicts the mean from 5-8 cells. The lines are representative of 4 

independent experiments. 

Fig. 9. PLD immunoblot and effect of PLD antibodies on somatostatin(SS)-induced increase 

in [Ca2+]j in the presence of AVP. Inset, 10 [ig of the whole cell protein was run on SDS-

PAGE, transferred to the PVDF membrane, and blotted with PLD antibodies. For [Ca2+]j 

determination, HIT-T15 cells were pretreated with PLD antibodies using the BioPORTER® 

protein delivery system 4 h prior to Fura-2AM loading. Cells were exposed to AVP (1 nM) 

for 120 s before the addition of somatostatin (100 nM). AVP (100 nM) was added 120 s 

after somatostatin treatment. Each line depicts the mean from 5-8 cells. The lines are 

representative of 4 independent experiments. 

Fig. 10. Summary of the crosstalk between AVP receptor (Vu,) and somatostatin receptor 

(sstr2) in stimulation of insulin release from P-cells. Activation of the Gj/0-coupled receptor 

by somatostatin increases PIP2 synthesis from PIP through G (By. GPy activates PLD to 

increase the synthesis of phosphatidic acid (PA) from phosphatidylcholine (PC). PA 

activates PIP 5-kinase to increase synthesis of PIP2, providing extra substrate for preactivated 

PLC-(3 by AVP. This increases in DAG and IP3 levels and [Ca2+]j lead to insulin release. 

ER: endoplasmic reticulum. 
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CHAPTER 3: SOMATOSTATIN RECEPTORS SIGNALS THROUGH 

EFA6-ARF6 TO ACTIVATE PLD IN CLONAL (3-CELLS, HIT-T15 

Justin A. Grodnitzky1, Michael J. Kimber1, Tim A. Day1, Julie Donaldson2, Walter H. 

Hsu1 

A paper to be submitted to the Journal of Biological Chemistry 

1Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011. 

2Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 

Somatostatin (SS) is a peptide hormone that is known to inhibit insulin secretion in [3-cells. 

This inhibitory effect occurs when SS activates its Gj/0-protein coupled receptors (GPCR). 

Our previous work indicated that py-dimer coupled to S S receptors can activate 

phospholipase D1 (PLD1)(12). The present study was to elucidate the mechanisms 

underlying SS-induced increase in PLD activity. We demonstrated the presence of ADP-

ribosylation factor (Arf)l and Arf6 in HIT-T15 cells. We also determined that this activation 

of PLDl was mediated through Arf6. Over-expression of dominant-negative Arf6 mutant 

construct Arf6T27N completely abolished the ability of SS to activate PLD and over-

expression of wild type-Arf6 further enhanced this PLD activation. Furthermore to 

determine if the effect of Arf6 on SS-PLD activity was non-specific, over-expression of 
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dominant-negative Arfl mutant construct ArflT31N was used in HIT-T15 P-cells. Finally 

we cloned and determined the involvement of the Arf6 guanine nucleotide exchange factor 

(GEF) EFA6A, a GEF previously thought to be found predominantly in the brain, in the 

activation of PLD 1 in HIT-T15 p-cells. Over-expression of dominant negative EFA6A 

construct completely abolished the ability of SS to activate PLD, while over-expression of a 

dominant-negative mutant of ARNO, another GEF of Arf6, had no effect on SS-induced 

increase in PLD. Taken together, these results suggest that SS signals through EFA6 to 

activate Arf6-PLD cascade. 

INTRODUCTION 

SS is a peptide hormone that is well known for its ability to inhibit the secretion of 

growth hormone, glucagon, and insulin (1,2). This peptide hormone is secreted from many 

tissues in the body including the pancreatic 8-cells (1,2). SS secreted from 8-cells can exert 

an inhibitory paracrine effect on insulin producing (3-cells and is released in two sizes; a 14-

amino acid peptide and its prohormone N-terminal extended form, a 28 amino acid peptide 

(1,2). There are six SS receptors, all of which are G-protein coupled receptors (GPCRs) 

(3,4), which couple through a Gccj/0 subunit. SS transduces its physiological signal through 

many effectors ranging from adenylyl cyclase (5), inwardly rectifying K+ channels (6), 

tyrosine phosphatase (7), phospholipase C (8), voltage-dependent Ca2+ channel (9), Na+-H+ 

antiporter (10), and MAP kinase (11). We recently reported that SS can activate PLD, 

causing a subsequent increase in phosphoinsitol 4,5-bisphophate (PIP2) concentration12. This 

receptor-mediated activation of PLD was attributed to the release of the Py-dimer coupled to 
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SS-receptors and occurred in a pertussis toxin-sensitive manner. We also demonstrated that 

PLD1 was the only detectable isoform present in HIT-T15 cells and the downstream 

stimulatory effects of SS on PIP2 levels and intracellular calcium concentration ([Ca2+]j) 

could be attributed to the activation of PLD 1. 

PLD is known to hydrolyze phosphatidylcholine (PC) to phosphatidic acid (PA). The 

conversion of PC to PA regulates many cellular processes such as endocytosis, exocytosis, 

cell proliferation, and cell migration (13,14,15,16,17). There are two mammalian PLD 

isoforms, PLD1 and PLD2. These isoforms differ in their subcellular location and 

regulation. PLD1 is located in the cytosol, Golgi, nucleus, and plasma membrane, while 

PLD2 seems to be largely found on the plasma membrane (18). Each isoform may exist as 

one of two a splice variants, i.e., PLD la, PLD lb, PLD2a, and PLD2b (19,20). There are 

many potential regulators for PLD, but only a few of them can stimulate both isoforms. The 

membrane phospholipids, PIP2, and protein kinase C (PKC) are both known to stimulate both 

isoforms of PLD (21,22). The family of small G-proteins, ADP-ribosylation factor (Art) 

and Rho are potent stimulators of PLD 1, but are unable to stimulate the endogenous forms of 

PLD2 (6,23). PLD activity can also be stimulated by the activation of various GPCRs. A 

plethora of GPCR agonists have been shown to stimulate PLD activity. Angiotensin II (24), 

bradykinin (25), carbachol (26), lysophosphatidic acid (27), gonadotropin releasing hormone 

(28), vasopressin (29), endothelin (30), thyroid-stimulating hormone (31), and prostaglandin 

F2a (32) are examples of the prevalent nature of GPCR-mediated stimulation of PLD. 

GPCRs can activate PLD in many ways. They can stimulate PLD through 

phospholipase C (PLC)-dependent signaling pathway. PLC catalyzes the conversion of PIP2 

to inositol 1, 4, 5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 mobilizes Ca2+ from 
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endoplasmic reticulum stores. This increase in [Ca2+]j is known to activate conventional 

isoforms of PKC. DAG, the other product of PLC activity, can also stimulate PKC through 

its interaction with the CI-domain of the conventional and novel PKC isoforms. Both PKC 

isoforms are known to enhance the activity of PLD. Researchers have also demonstrated that 

GPCR activation of small G-proteins can stimulate PLD (6,11). The signaling mechanisms 

responsible for small G-proteins regulation of PLD are diverse, but two small G-proteins, 

Rho and Arf, have been firmly established to regulate PLD activity through GPCRs 

(26,32,42,46,47,49). Stimulation of Rho by activation of GPCRs is attributed to the 

associated Py-dimer binding to the pleckstrin homology (PH)-domain of a guanine nucleotide 

exchange factor for Rho (33) and its direct interaction with Ga,2m-subunit (34, 35). These 

interactions cause GDP to dissociate from Rho, which allows Rho to bind GTP, switching it 

to the active form. Rho-GTP binds to the C-terminus of PLD 1. In HIT-T15 cells, C3 

exoenzyme (10 gg/ml), a Rho inhibitor isolated from Clostridium botulinum (36), and Ro31-

8220 (10 |iM), a PKC inhibitor, did not inhibit the S S-induced activation of PLD and its 

subsequent increase PIP2 that leads to a synergistic increase in [Ca2+]j. in the presence of A VP 

(1 nM) (Grodnitzky and Hsu, unpublished data). 

In this paper we focused on the role of Arf isoforms in the regulation of SS-induced 

increase in PLD activity in an insulin secreting cell line, HIT-T15. Arf proteins are small G-

proteins that play an important role in vesicle transport, endocytosis, insulin secretion, and 

actin rearrangement. There are 3 classes of Arf proteins (37). Class I: Arfl, 2, 3 play an 

important role in Golgi vesicle transport. Class II: the role of Arf4 and Arf5 in cell signaling 

is not fully elucidated. Class III: Arf6 is located in the plasma membrane and facilitates 

endocytosis pathways. Arf6 also regulates cortical actin cytoskeleton arrangement and has a 



96 

profound effect on cell migration (38), wound healing (39) and phagocytosis (40). Like all 

small G-proteins, Arf proteins switch from their inactive GDP-bound state to their active 

GTP-bound state. The intrinsic GTPase activity of Arf proteins is mainly affected by 

guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). GEF s 

enhance the dissection rate of GDP from Arts, which is the rate limiting step in Arf 

activation. GAPs increase the intrinsic GTPase activity of Arf, switching them to their GDP 

inactive state. 

There are several well-defined hypotheses for GPCR activation of Arf proteins. 

There is evidence suggesting that Arfl and Arf6 directly interact with the third intracellular 

loop of GPCRs and become activated upon stimulation of the receptors (41, 42). Other 

studies indicate that Arf6 binds to |3-arrestin and becomes activated by the stimulation of 

ARNO, a GEF for Arfl and Arf6 (14). In this paper we report that in HIT-T15 cells, SS 

utilizes a novel signaling pathway to regulate PLD activity. We hypothesize that in HIT-T15 

cells 1) SS receptor-mediates release of py-dimer signals through Arf6 to activate PLD and 

2) Arf6 activation by SS receptors is mediate by EFA6A, a low-molecular weight guanine 

nuclear exchange factor of Arf6, thought to be primarily found in the brain (43). 

EXPERIMENTAL PROCEDURES 

Cell culture and transfection. HIT-T15 cells were maintained in RPMI 1640 with 10 % 

FBS and aerated with 5 % CO2, 95 % air at 37°C. All experiments were performed using 

cells from passages 80-90. pXS plasmids expressing wild type Arf6 (wtARF6), and 

dominant negative constructs of Arf6 (ARF6T27N), and Arfl (ARF1T31N) were generated 

as described previously (44). All plasmid were transfected into HIT-T15 cells using 
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Lipofectamine™ (Invitrogen, Carlsbad, CA) according to the manufacturer's protocol. 

Protein expression of the FLAG-tagged EFA6 and ARNO constructs and HA-tagged Arf 

constructs was determined by immunocytochemistry using anti-FLAG and HA monoclonal 

antibodies with 80-90% of HIT T-15 cells expressing the FLAG and HA epitopes (data not 

shown). 

Western blot anlysis. Rabbit polyclonal antibodies were raised against a COOH-terminal 

peptide of Arf6, residues 164-175. Antibodies raised against Arfl were a generous gift 

supplied by Dr. Richard Kahn of Emory University School of Medicine. Ten jag of whole 

cell HIT-T15 protein was separated by reduced SDS-PAGE (10%). Protein was transferred 

to PVDF membranes in transfer buffer (35 mM Tris, 190 mM glycine, 20% methanol). The 

PVDF membranes were blocked with 5% non-fat dry milk in PBS for 1 h at room 

temperature. The primary Arf antibodies were diluted 1:50 in wash buffer (0.01% Tween 20 

in PBS) and incubated with the PVDF membranes for 1 h at room temperature. The blots 

were washed 3 times for 10 min each with wash buffer. The secondary antibody (goat anti-

rabbit IgG conjugated to horseradish peroxidase, Pierce, Rockford, IL) was diluted 1:2,000 in 

wash buffer and incubated with the PVDF membranes for 1 h at room temperature. The 

blots were then washed and developed using diaminobenzidine. 

Determination of PLD activity. PLD assay was performed using a previously described 

method 45. Briefly, HIT-T15 cells were grown in 24-well plates overnight in RPMI 1640 

medium with 10% FBS. The medium was then discarded and 500 |il of 3 pCi/ml of 

[3H]myristic acid was added to each well for 60 min. Cells were then washed twice with 
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KRB before 400 jj.1 of KRB was added to each well. Treatments were applied 15 s after the 

addition of 1 -butanol (0.5%). The reactions were terminated 30 s after treatments had been 

administered. Phosphatidylcholine (PC) and phosphatidylbutanol (PBt) were identified by 

migration with unlabeled standards, visualized by iodine staining and radiographed into l-cm 

blocks and were subsequently scraped and radioactivity quantified by liquid scintillation 

counting. 

Cloning of EFA6. Total RNA was extracted from HIT-T15 cells using TRI-REAGENT 

(Sigma) as described by the manufacture. Poly-A+ RNA was extracted using Dynabeads 

mRNA DIRECT Kit (DYNAL) as described by the manufacture. mRNA was then used to 

synthesize separate 5' and 3' RACE-ready cDNA using the SMART RACE cDNA 

Amplification Kit (BD Biosciences). Rat EFA6A gene specific sense and antisense primers 

were designed, based on the sequence information obtained using NCBI gene bank 

(GenBank Number NM 134370). These primers and cDNA templates were used in RACE 

PCR using SMART RACE cDNA Amplification Kit (BD Biosciences). The components of 

the reactions were as follows: 5.0 |il universal Primer Mix (lOx), 1.0 |_il gene specific primer 

(10 jaM), 2.5 |-i 1 cDNA, 1.0 |iL dNTP(10 |iM), 5.0 (il lOx PCR buffer, 34.5 |il PCR grade 

water and 1.0 |_U Advantage 2 polymerase Mix. The reactions were visualized on a 1.2% 

agarose gel (0.5 fJ.g/ml ethidium bromide). Discrete amplicons were excised from the 

agarose gel and purified using the MinElute Gel Extraction Kit (QIAGEN). The amplicons 

were then ligated into pGEM-T Easy Vector (Promega) prior to transformation into E. coli 

competent cells (JM109). Positive clones were cultured overnight and plasmid prepped 

using Wizard Plus SV Minipreps DNA purification System (Promega). DNA insert was 
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sequenced by Iowa State University's DNA Squencing facility using standard protocols. 

Sequences were edited using Vector NTI software (Informax). 

Data analyses. All values are presented as mean ± SE. Results were analyzed using 

ANOVA and individual mean comparisons were made using the Least Significant Difference 

test. The significance level was set atp< 0.05. 

RESULTS 

Western blot analysis 

Both Arfl and Arf6 have shown to stimulate PLD activity through GPCR signaling. To 

determine the particular Arf isoform that may play a role in this SS-receptor signaling 

pathway, Western blot analysis was performed to determine the Arf isoforms present in HIT-

T15 cells. Arfl and Arf6 with sizes of 20 kDa were both detected in HIT-T15 cells (Fig.l). 

Western blot analysis demonstrated the presence Arfl and 6 specific antibodies indicating 

both Arfl and Arf6 are present in HIT-T15 cells. 

Over-expression of Arf6 constructs 

Arf6 has been previously shown to stimulate PLD in other systems via a GPCR-mediated 

pathway (26,42,46,47). To determine the involvement of Arf6 in PLD stimulation in HIT-

T15 cells, we over-expressed various Arf6 constructs and analyzed their effect on SS-

induced increase in PLD activity. SS (100 nM) increased PLD activity ~2 fold (Fig. 2). 

Over-expression of Arf6 dominant-negative mutant Arf6T27N completely blocked SS 

induced increase in PLD (Fig. 2). Furthermore, over-expression of dominant-negative 
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mutant Arf6T27N did not affect baseline PLD activity (Fig. 2). These results suggest that 

Arf6 mediates SS-induced activation of PLD. 

Over-expression of wild type (wt) Arf6 enhanced SS (100 nM)-induced increase in 

PLD activity, but did not change baseline PLD activity (Fig. 3). These results suggested that 

SS stimulation of PLD activity is mediated through an Arf6 dependent pathway. 

Over-expression of Arfl dominant-negative mutant 

Arfl is another well known regulator of PLD 1 and has also been demonstrated to stimulate 

PLD activity via a GPCR-mediated pathway and was present in HIT-T15 cells (Fig 1). To 

determine the involvement of Arfl in this signaling pathway, an Arfl dominant-negative 

mutant ArflT3 IN was over-expressed to determine its effects on SS-mediated increase in 

PLD activity. SS (100 nM) stimulation of PLD was not affected by the over-expression of 

ArflT3 IN (Fig. 4). Over-expression of ArflT3 IN had no effect on baseline PLD activity 

either (Fig. 4). The above data suggested that Arfl does not play a significant role in SS-

induced increase in PLD activity. 

Over-expression of dominant-negative mutants of EFA6 and ARNO 

AJRNO is one of three low molecular weight GEFs that are known to increase Arf activity 

and cause a subsequent increase in PLD activity through a GPCR-signaling pathway 

(46,47,48). To determine the role of ARNO in the SS-induced increase in PLD, over-

expression of ARNO dominant-negative mutants (ARNOE156K) was used to determine its 

role in this system. Over-expressing ARNOE156K had no effect on SS-induced increase on 

PLD activity, nor was PLD basal activity affected (Fig. 5). These results suggested that 



ARNO does not play a significant role in SS-mediated activation of PLD. EFA6, another 

GEF of Arf6, has not been reported to stimulate PLD through GPCR stimulation. In order to 

determine a possible role for EFA6, the other main GEF for Arf6, in this signaling pathway, 

cells were transfected with the EFA6 dominant-negative mutant, EFA6E242K. Over-

expressing EFA6E242K abolished the ability of SS to stimulate PLD activity (Fig. 6), but did 

not change basal PLD activity (Fig. 6). These results suggested that EFA6 may play role in 

SS-induced activation of PLD and they provide further evidence for the involvement of Arf6 

in signaling pathway of SS receptors. 

Cloning of EFA6 in HIT-T15 cells 

Previous reports regarding the expression pattern of EFA6 indicated that this GEF is found 

predominantly in the brain (43). To implicate the involvement of EFA6 in our observed 

signaling pathway, it was imperative to confirm the presence of EFA6 in HIT-T15 cells. 

PCR primers designed from rat EFA6 sequence were used in conjunction with HIT-T15 

cDNA to identify a 1256-base pair fragment with high homology to EFA6. The fragment 

encodes a 417-amino acid open reading frame that has 97% indentity to rat EFA6 at the 

amino acid level. Such homology strongly suggests that this fragment constitutes at least 

part of an endogenous hamster EFA6 molecule expressed in HIT-T15 cells. 

DISCUSSION 

The above findings strongly support the hypothesis that Arf6 mediates the SS-induced 

increase in PLD activity in clonal P-cells HIT-T15. The effects of over-expression of 

Arf6T27N and wt-Arf6 indicate that Arf6 is essential for this pathway. In addition, this 
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effect does not seem to be an artifact of the over-expression of an Arf protein, because over-

expression of Arfl T3 IN did not have any effect on S S receptor signaling pathway. The 

ability of the EFA6 dominant-negative mutant, EFA6E246K to block SS-induced increase in 

PLD activity further implicated the involvement of Arf6. EFA6 is a specific GEF for Arf6 

and alteration of this GEF would have a profound effect on Arf6. Over-expressing 

AKNOE156K, a dominant-negative mutant of a GEF for Arfl and Arf6, did not alter SS-

induced activation of PLD. These findings taken together with EFA6E246K ability to hinder 

SS activation PLD strongly suggested the involvement of EFA6 in this signaling pathway. 

We previously demonstrated that S S was able to increase PLD activity in HIT-T15 

cells, leading to a subsequent increase in PIP2 levels (21). In this paper we report a novel 

mechanism for PLD stimulation. In our proposed model, the py-dimer that couples to SS 

receptors interacts with EFA6, which is known to increase the nucleotide exchange rate of 

Arf6. Arf6-GTP would activate PLD I in HIT-T15 cells. Although our proposed model for 

GPCR-mediated activation of the Arf6-PLD signaling cascade is considerably similar to 

other previously reported models, distinct differences between the models are apparent. In 

one proposed model Py-dimer directly interact with Arfl and Arf4 (49,50). In our system, 

Arfl did not play a major role in the SS-induced activation of PLD, indicating that the direct 

interaction of Py-dimer with Arfl does not occur in the HIT-T15 cell system for SS-Arf6 

signaling. 

There have been several reports of GPCR activation of Arf6 occurring due to the 

ability of Arf6 to directly interact with activated GPCRs. This signaling cascade has been 

demonstrated in 5-hydroxytryptamine-2a receptors (41), gonadotropin-releasing hormone 

receptors (42) and M3 muscarinic receptors (14). These studies show the involvement of 
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Arfl, Arf3, and Arf6 in the GPCR-mediated activation of PLD. This signaling cascade is 

dependent on Arf proteins interacting with the NxxPY motif located in the third intracellular 

loop of these receptors. NPxxY motif is a common motif found in most GPCRs Class A 

family and is found in SS; receptor (SSTR2), the SS receptor present in HIT-T15 cells that 

mediate the effect of SS in these cells (51). These studies demonstrate that the activation of a 

GPCR can stimulate the conversion of Arf-GDP to its active Arf-GTP bound state, Arf-GTP 

can then bind to the NxxPY region of the receptor. The direct binding model does not 

conflict with the results obtained in this study. The focus of this study was to determine the 

proteins involved in SS-induced activation of PLD and we did not address the translocation 

or scaffolding properties of activated Arf6 in this paper. It is possible that the Py-dimer 

interacts with EFA6 to switch Arf6 to the GTP bound state. Furthermore, the active Arf6 

could then bind to NxxPY motif of an activated SS receptor, which may be essential for PLD 

activity. Additional studies are required to determine if a direct interaction transpires 

between SS receptors and Arf6-GTP. 

In our proposed model, the mechanism of SS-induced activation of PLD in HIT-T15 

cells signals through py-dimer (12). We hypothesize that the Py-dimer coupling to S S 

receptors interacts with EFA6, which will cause a subsequent stimulation of PLD 1 in HIT-

T15 cells through Arf6 activation (Fig. 8). This study provides an exciting novel signal 

mechanism upon which SS can activate PLD. Another well-documented model for GPCR 

mediated activation of Arf6 involves the stimulation of p-adrenergic receptors and other 

GPCRs (52,53,54). Activation of these receptors leads to the dissociation of Py-dimer and 

subsequent activation of G-protein receptor kinases (GRK). GRK then phosphorylates the 

receptors, which recruits P-arrestin to the receptor and leads to receptor desensitization 



104 

(52,53,54). Upon P-arrestin binding, ARNO scaffolds with the desensitized receptor 

complex, thereby activating Arf6. The two main differences between the models are the 

GEFs involved in Arf6 activation and the additional downstream signaling events that occur 

after the dissociation of Py-dimer. In our system, EFA6 controls this SS-induced activation 

of PLD. In the other model ARNO is responsible for Arf6 activation. Surprisingly, in HIT-

T15, EFA6 dominated this signaling cascade and ARNO did not significantly contribute to 

this pathway. These results indicate that in HIT-T15 cells EFA6 is essential for this pathway. 

However, it is possible that additional signaling events occurring between the py-dimer and 

EFA6. Such events are likely to include the involvement of GRKs and arrestins, as 

suggested by the alternative signal pathway. 

Although this study provides an exciting novel signal mechanism upon which SS can 

activate PLD1 and cause a subsequent increase in PIP2, the physiological significance for SS-

induced activation of Arf6 and PLD 1 is unknown. Arf6-induced increase in PIP2 levels has 

been reported in another pancreatic P-cell line. In MIN6 cells, the ability of Arf6 to increase 

PIP2 levels was essential to the slow phase of insulin secretion but had no effect on initial fast 

phase of insulin secretion (55). In addition, PLD1 activation has been shown to be essential 

for insulin secretion for both glucose and cholinergic receptor-mediated responses (56,57). 

The action of PLD 1 on exocytosis appears to mediate its effect through a distal step of 

exocytosis, somewhere beyond vesicle recruitment and the readily releasable pool. Both 

Arf6 and PLD1 activity enhance exocytotic processes in insulin secreting P-cells, so we are 

perplexed to why an inhibitor hormone like SS would signal through Arf6-PLD1 pathway. 

Although we do not understand the physiological significance of SS signaling through EFA6 

to activate Arf6 and PLD, it does provide a novel signal mechanism for SS. 
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This study also describes for the first time the ability of a GPCR to interact with 

EFA6A and the presence of EFA6A in insulin secreting cells. In HIT-T15 cells, a partial 

sequence of EFA6A was detected. We are consistently unable to characterize the N-terminal 

third of the putative EFA6A molecule as compared to the rat EFA6A. In addition, Western 

blot analysis of using antibodies that recognize the N-terminus of EFA6A was unable to 

detect endogenous EFA6A in HIT-T15 cells (Grodnitzky, unpublished data). The high 

sequence homology between rat EFA6A and our hamster HIT-T15 EFA6 fragment, indicates 

the presence of EFA6A in HIT-T15 cells. Other researchers have demonstrated a short form 

of EFA6A in the small intestine, ovary, and colon in human tissue (58). Taken together with 

our cloning efforts and Western blot analysis, there is tentative evidence for the existence of 

this truncated EFA6A isoform in HIT-T15, although further studies will be required to 

confirm this hypothesis (58). 

LEGENDS FOR FIGURES 

Fig. 1. Western blot analysis of Arfl and Arf6 in HIT-T15 cells. 10 (ig of the whole cell 

protein was separated using SOS-PAGE, transferred to PVDF membrane, and blotted with 

1:50 Arfl and 1:50 Arf6 antibodies. 

Fig. 2. Effect of Arf6(T27N) expression on SS-induced increase on PLD activity. HIT-T15 

cells were transfected 24 h prior to PLD assay. Cells were then pretreated with 0.5% 1-

butanol 15 s prior to SS treatment. Experiments were terminated 30 s after SS had been 
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administered. Values are the mean ± SE (n=4 independent cell preparations). *p < 0.05 

compared to controls. PBt = phosphatidylbutanol, PC=phosphatidylcholine. 

Fig. 3. Effect of wt-Arf6 expression on SS-induced increase on PLD activity. HIT-T15 cells 

were transacted 24 h prior to PLD assay. Cells were then pretreated with 0.5% 1-butanol 

15 s prior to SS treatment. Experiments were terminated 30 s after SS had been 

administered. Values are the mean ± SE (n=4 independent cell preparations). *p < 0.05 

compared to controls. PBt = phosphatidylbutanol, PC=phosphatidylcholine. 

Fig. 4. Effect of Arfl (T3 IN) expression on SS-induced increase on PLD activity. HIT-T15 

cells were transfected 24 h prior to PLD assay. Cells were then pretreated with 0.5% 1-

butanol 15 s prior to SS treatment. Experiments were terminated 30 s after SS had been 

administered. Values are the mean ± SE (n=4 independent cell preparations). *p < 0.05 

compared to controls. PBt = phosphatidylbutanol, PC=phosphatidylcholine. 

Fig. 5. Effect of ARNO(E27K) expression on SS-induced increase on PLD activity. HIT-

T15 cells were transfected 24 h prior to PLD assay. Cells were then pretreated with 0.5% 1-

butanol 15 s prior to SS treatment. Experiments were terminated 30 s after SS had been 

administered. Values are the mean ± SE (n=4 independent cell preparations). *p < 0.05 

compared to controls. PBt = phosphatidylbutanol, PC=phosphatidylcholine. 
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Fig. 6. Effect of EFA6A(E242K) expression on SS-induced increase on PLD activity. HIT-

T15 cells were transfected 24 h prior to PLD assay. Cells were then pretreated with 0.5% 1-

butanol 15s prior to SS treatment. Experiments were terminated 30 s after SS had been 

administered. Values are the mean ± SE (n=4 independent cell preparations). *p < 0.05 

compared to controls. PBt = phosphatidylbutanol, PC=phosphatidylcholine. 

Fig. 7. Comparison of amino acid sequence deduced from known rat EFA6A to HIT-T15 cell 

EFA6a. HIT-T15 cell EFA6 has 97% identity with rat EFA6 at the amino acid level. 

Fig. 8. Proposed model of SS-induced increase in PLD activity. SS type 2 receptor (SSTR2) 

activation releases the py-dimer activates EFA6, a GEF for Arf6. This causes Arf6 to release 

GDP and to bind GTP. The active Arf6 will then bind to and activate PLD. PLD will convert 

phosphatidylcholine (PC) into phosphatidic acid (PA). 
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FIGURES 
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Rat ( 2 3 5 )  
HIT-T15 

RVFLKELALMGETQERERVLAHFSQRYFQCNPEALgSEDGAHTLTCALMLLNTDLHGHNIGKRMT 
RVFLKELALMGETQERERVLAHFSQRYFQCNPEALSSEDGAHTLTCALMLLNTDLHGHNIGKRMT 

Rat ( 3 0 0 )  
HIT-T15 

CGDFIGNLEGLNDGGDFPRELLKALYSSIKNEKLQWAIDEEELRRSLSELADPNPKVIKRVSGGS 
CGDFIGNLEGLNDGGDFPRELLKALYSSIKNEKLQWAIDEEELRRSLSELADPNPKVIKRVSGGS 

Rat ( 3 6 5 )  
HIT-T15 

GSSSSPFLDLTPEPGAAVYKHGALVRKVHADPDCRKTPRGKRGWKSFHGgLKGMILYLQKEEYQP 
GSSSSPFLDLTPEPGAAVYKHGALVRKVHADPDCRKTPRGKRGWKSFHGilLKGMILYLQKEEYQP 

Rat ( 4 3 0 )  
HIT-T15 

GKALSEAELKNAISIHHALATRASDYSKRPHVFYLRTADWRVFLFQAPSLEQ|JQSWITRINW. 
GKALSEAELKNAISIHHALATRASDYSKRPHVFYLRTADWRVFLFQAPSLEQ0QSWITRINW, 

2 

Rat ( 4 9 5 )  
HIT-T15 

MFSAPPFPAAVSSQKKFSRPLLPSAATRLSQEEQVRTHEAK^KAMASELREHRAAHLGKKARGKE 
TSAPPFPAAVSSQKKFSRPLLPSAATRLSQEEQVRTHEAKHKAMASELREHRAAHLGKKARGKE 

Rat ( 5 6 0 )  
HIT-T15 

Rat ( 6 2 5 )  
HIT-T15 

ap 
Ses 

GSEARAGAGSTRPKP! 
GSEARAGAGSTRPKP 

Fig. 7. 
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Fig. 8. 
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CHAPTER 4: GENERAL DISCUSSION 

In this dissertation we demonstrate a novel signaling pathway within pancreatic p-cells. This 

project started because of a previous report in HIT-T15 cells that somatostatin (SS) increased 

[Ca2+]j and transiently stimulated insulin release in the presence of A VP1. We have shown 

that after SS treatment, phosphosinositol 4-phosphosate (PIP) levels decreased but 

phosphoinositol 4,5-bisphosphate (PIP2) levels increased, suggesting that SS increases PIP2 

synthesis. Our findings are further supported by the administration of PIP2 into the cell, in 

which PIP2 alone failed to increase [Ca2+]j, but PIP2 in the presence of a small concentration 

of A VP (1 nM) increased [Ca2+]j. Because PIP2 and PIP failed to increase [Ca2+]j in the 

absence of A VP (1 nM), we believe that these phospholipids alone are unable to elicit any 

[Ca2+]j response in HIT-T15 cells. The failure of microinjected PIP (50 amol) to induce 

changes in [Ca2+]j in the presence of A VP (1 nM) demonstrated that the microinjection of 

PIP, in the presence of A VP, which caused an increase in [Ca2+]j, was due to the use of PIP2 

as a substrate for low-grade PLC activation and not an artifact of the system. Thus, we have 

demonstrated that SS can increase PIP2 synthesis, which in turn provides extra substrate for 

preactivated PLC-P by A VP to generate high levels of IP3. Without a preactivated PLC-P, 

SS failed to increase IP3 levels (Fig. 3) and [Ca2+]j\ 

In this dissertation we also demonstrated for the first time that SS can increase PLD 

activity. This effect of SS was PTX-sensitive, and was blocked by expression of ct-pARK, 

which is known to sequester Py-dimer, suggesting that G;/0-Py dimer mediates this effect. We 

further demonstrated that SS-induced increase in PLD activity resulted in an increase in PIP2 

formation. PLD is the enzyme that catalyzes the formation of phosphatidic acid (PA), which 
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formation. PLD is the enzyme that catalyzes the formation of phosphatide acid (PA), which 

in turn activates PIP 5-kinase to increase PIP2 synthesis2. In this dissertation, we 

demonstrated that microinjection of PA in the presence of A VP increased [Ca2+]j, which has 

been used as an indicator for IP3 levels increase. In addition, PLD inhibitors, 1-butanol and 

zLYCK, and antibody against PLD I all blocked SS-induced [Ca2+]j increase in the presence 

of A VP. 1 -Butanol further abolished SS-induced PIP2 increase. Therefore, the present 

findings strongly supported the hypothesis that SS increases PA synthesis, which in turn 

activates PIP-5 kinase, the enzyme catalyzing the formation of PIP2. In this system SS was 

able to increase PIP2 levels, providing extra substrate for PLC-p. 

We have further demonstrated (Chapter 3) the involvement of mediators upstream 

from PLD activation. The activation of SS receptors that are coupled to Gj/0, leads to an 

increase in PIP2 synthesis through GJ3y activation of PLD. In Chapter 3 we demonstrated 

that Arf6 mediates the SS-induced increase in PLD activity. The effects of over-expression of 

Arf6T27N (a dominant-negative Arf6 mutant) and wt-Arf6 (Arf6 wild type) indicate that 

Arf6 is essential for SS-mediated PLD activation. In addition, this effect does not seem to be 

an artifact of the over-expression of an Arf protein, because over-expression of ArflT31N (a 

dominant-negative Arfl mutant) did not have any effect on SS-mediated pathway. The 

ability of the EFA6 dominant-negative mutant, EFA6E246K, to block SS-induced increase in 

PLD activity further implicates the involvement of Arf6. EFA6 is a specific GEF for Arf6 

and disruption of this GEF would have a profound effect on Arf6. Over-expressing 

ARNOE156K, a dominant-negative mutant of a GEF for Arfl and Arf6, did not affect SS 

activation of PLD. This result taken together with the ability of EFA6E246K to hinder SS 

activation of PLD strongly suggests the involvement of EFA6 in this pathway. 
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This dissertation demonstrates a novel receptor-mediated mechanism for PIP2 

increase in insulin secreting P-cells. Binding of SS to its Gj/0 coupled receptor activates the 

small G-protein, Arf6, with modulation by the GEF, EFA6. Activated Arf6 stimulates PLD1 

to hydrolyze phosphatidylcholine (PC) to PA, which in turn will stimulate PIP-5 kinase to 

PIP, forming PEP2 (Fig. 1). PIP2 is the substrate for generation of IP3 and subsequently the 

liberation of Ca2+ from ER (Fig. 1). Although this pathway represents a novel signal 

transduction mechanism for SS in insulin secreting P-cells, the physiological significance of 

this pathway is unknown. The crosstalk effect in the presences of a Gaq-coupled receptor 

agonist is paradoxical to SS's role as an inhibitor. The action of SS to function as a 

secretagogue for insulin release led critics of our system to believe that the cross-talk effect 

was just an artifact of our cell culture system and not a realistic effect for the in vivo activity 

of SS. Other than our previous findings, there are no reports that SS can increase insulin 

release from cell culture models or isolated pancreatic islets. In normal physiology, cells are 

exposed to many hormones and the cross-talk effects of these hormones are almost always 

overlooked. Conclusions are then drawn about the physiological effects of a hormone in the 

absence of other signaling molecules. Although it is important to evaluate the effect of the 

hormone in isolation, it should not be forgotten that cells are surrounded by many signaling 

molecules that may affect its response to that hormone. In the HIT-T15 cell system, our 

results were dismissed by some of our critics because we showed a stimulator effects of SS in 

the presences of a Gaq-coupled agonist, which goes against the normal paradigm of the 

inhibitory nature of SS. Interestingly, SS receptor 5 (sstr5) knockout mice have lower plasma 

insulin levels when compared to the controls although their P-cells contained more insulin 

and secreted more insulin from their isolated 
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Figure 1. Proposed model of SS-induced increase in PIP2 and cross-talk with A VP. SS receptors activation 
releases the bg-dimer and directly activates EFA6, a GEF for Arf6. This causes Arf6 to release GDP and to 
bind GTP. The active Arf6 will then bind to and activate PLD. PLD will convert phosphatidylcholine (PC) 
into phosphatidic acid (PA). PA, a known activator of PIP 5-kinase will activate this enzyme synthesizing 
more PIP2, providing extra substrate for preactivated PLC-P by A VP. This increase in DAG and IP3 levels 
and [Ca2+]( leads to insulin release. 
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pancreatic islets3. These results are also paradoxical in nature. If mice missing sstrS had low 

insulin release and their p-cells contain more insulin than the control mice, one would expect 

to find higher plasma insulin levels because there would be no inhibitory control in these SS-

knockout mice. However, the opposite results were found. These data suggested that P-cells 

from isolated islets are inhibited by S S but input from other tissue or hormone enables S S to 

have a stimulatory effect on insulin secretion. Although we cannot determine if SS 

paradoxical effect plays a true role in normal physiology, the above study suggests that the 

HIT-T15 cell model is at least plausible. It also clearly exemplifies the complex nature of 

system physiology and the effects of multiple interactions on cells. 

The paradoxical cross-talk, which occurs in HIT-T15 cells is an interesting signaling 

event that may not be the only consequence of SS-mediated increase in PIP2 levels. PrP2 can 

regulate a wide range of cellular processes, including exocytosis4, clathrin-mediated 

endocytosis5, actin rearrangement6, vesicle docking7, opening of G-protein-gated inwardly 

rectifying K+ channels (GIRK)8, KATP channels9, membrane ruffling and trafficking10. 

Because of the diverse role of PIP; in cellular processes, it is uncertain what impact SS-

induced increase in PLD activity and its subsequent increase in PIP2 levels have on normal p-

cell physiology. However, SS has been shown to regulate many of the same effectors as PIP2. 

Out of the copious number of signaling events that PIP2 can elicit, the ones that may play an 

important role in SS-mediated signaling in P-cells are GIRK activation and receptor 

desensitization and sequestration and activation of GIRK. The inhibitory effect of SS has 

been shown to act independently of its receptor coupled a-subunit. It is interesting to note 

that opening of GIRK is enhanced in the presence of both Py-dimer and PrP2- In our system 
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SS-induced increase in PIP2 levels is dependent on (3y-dimer function. It is also possible that 

activation of GIRK to produce the classical inhibitory effect of SS is regulated by SS ability 

to increase Arf6, PLD and PIP2 levels. 

The SS-induced stimulation of the PLD pathway through Arf6 that causes a 

subsequent increase in PIP2 signaling may elicit other effects such as receptor desensitization 

and sequestration. Arf6 activation has been demonstrated to be essential to receptor 

desensitization and sequestration of receptors11. PfP2 has also been shown to be critical for 

endocytotic pathways12. It is likely the ability of SS to increase activation of Arf6, PLD and 

PIP2 levels will impact on to receptor desensitization and sequestration. The crosstalk effect 

produced by SS maybe just a coincidental effect of SS's ability to increase PIP2 for 

alternative functions. 

We have demonstrated that the py-dimer coupled to SS receptors causes EFA6 to 

activate Arf6, which stimulates PLD I activity, producing a subsequent increase in PIP2. 

However, the nature of the interaction between Py-dimer and EFA6 is unknown. Py-dimer 

could interact directly with EFA6 or indirectly affect EFA6. EFA6 is a 71-kDa protein that 

acts as a GEF and catalyzes the exchange of Arf6-GDP to Arf6-GTP, its active state. 

The Sec 7 domain of EFA6 and all other GEFs of Arf enhance nucleotide exchange rate in 

Arfs13. Sec7 and PH domain is tandem to each other in EFA6. Phosphatidylinositide binding 

site of EFA6 is a PH domain, which is the eleventh most common domain found in 

humans14. A PH domain within proteins is responsible for translocating proteins to 

membranes due to their high affinity to PIP2 and PIP3. The PH domain is also an effective 

binding site for Py-dimer. GRKII is preferentially activated by specific Py-dimer 

combinations upon their binding to GRKII PH domain15'16'11. PLC-P is also activated by Py-
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effectors for Py-dimer because of this PH domain. The PH domain of the GEF, ARNO, can 

act as an electrostatic switch to regulate nucleotide exchange of Arfl, indicating that the PH 

domain in ARNO is critical for activating Arfl,18 which could extend to all Arf GEFs. For 

other small G-proteins, Rho, Ras, and Rac, GEFs are known to be stimulated by Py-dimer by 

directly binding to their PH-domain19'20. This line of logic may transverse to Arfs and their 

GEFs. 

Another possible mechanism for Py-dimer-EFA6 mediated activation of Arf6 is 

exemplified by the stimulation of P-adrenergic receptors and other GPCRs, which leads to 

Py-dimer dissociation and activation of G-protein receptor kinases (GRK). GRK then 

phosphorylates the receptors, which recruits p-arrestin to the receptor and leads to receptor 

desensitization21'22,23. Upon P-arrestin binding, ARNO scaffolds with the desensitization-

receptor complex activating Arf622. The main differences between the models are the GEFs 

involved in Arf6 activation. These data suggest that the Py-dimer that couples to SS receptors 

could interact with GRK before interacting with EFA6. It will be exciting to elucidate how 

Py-dimer activates EFA6. Although we have not investigated the role of small G-protein 

cross-talk, it will be interesting if this crosstalk plays a role in this system. Small G-proteins 

coordinate their activity to synergize downstream effectors. Arf and Rho families of small G-

proteins can cooperatively enhance the activity of PLD24, cell motility25, and Golgi 

function26. It is interesting to note that EFA6A and Rac, a member of the Rho family, can 

increase membrane ruffling and actin rearrangement in TRVb-1 cells27. Deletion of EFA6A 

C-terminus completed inhibited membrane ruffling, suggesting that Rac may bind to the 
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proline-rich and coiled-coil motif found on EFA6A C-terminus. In HIT-T15 cells, EFA6A 

enhances PLD activity. Another documented small G-protein that coordinates its activity 

with the Arf family on PLD activity is Ral. RalA and Arf6 can synergistically activate 

PLD128. Further experiments will be needed to determine the role of other small G-proteins 

on PLD1 activity in our system. 

We demonstrated a novel signaling mechanism and cellular responses for SS signaling 

in P-cells and a multitude of new signaling effectors that were not previously associated with 

SS activity. This novel mechanism has us very excited to determine the physiological 

significance of SS-induced increase in PLD activity and PIP2 levels in p-cells and to 

determine the complete signaling cascade responsible for these cellular responses. In the 

future, I would like to pursue these research questions to help elucidate this novel signaling 

pathway. 
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